• Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with diffusion-based ensemble forecasting for probabilistic weather prediction. Both models are built on JAX and integrate advanced neural architectures capable of learning from multi-scale geophysical data represented on icosahedral meshes. The package includes pretrained model weights, normalization statistics, and demonstration notebooks that allow users to replicate and fine-tune weather forecasting experiments in Colab or on Google Cloud TPUs and GPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Hunyuan3D-1

    Hunyuan3D-1

    A Unified Framework for Text-to-3D and Image-to-3D Generation

    Hunyuan3D-1 is an earlier version in the same 3D generation line (the unified framework for text-to-3D and image-to-3D tasks) by Tencent Hunyuan. It provides a framework combining shape generation and texture synthesis, enabling users to create 3D assets from images or text conditions. While less advanced than version 2.1, it laid the foundations for the later PBR, higher resolution, and open-source enhancements. (Note: less detailed public documentation was found for Hunyuan3D-1 compared to 2.1.). Community and ecosystem support (e.g. usage via Blender addon for geometry/texture). Integration into user-friendly tools/platforms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    HunyuanVideo-Avatar

    HunyuanVideo-Avatar

    Tencent Hunyuan Multimodal diffusion transformer (MM-DiT) model

    HunyuanVideo-Avatar is a multimodal diffusion transformer (MM-DiT) model by Tencent Hunyuan for animating static avatar images into dynamic, emotion-controllable, and multi-character dialogue videos, conditioned on audio. It addresses challenges of motion realism, identity consistency, and emotional alignment. Innovations include a character image injection module, an Audio Emotion Module for transferring emotion cues, and a Face-Aware Audio Adapter to isolate audio effects on faces, enabling multiple characters to be animated in a scene. Character image injection module for better consistency between training and inference conditioning. Emotion control by extracting emotion reference images and transferring emotional style into video sequences.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 5
    Ling

    Ling

    Ling is a MoE LLM provided and open-sourced by InclusionAI

    Ling is a Mixture-of-Experts (MoE) large language model (LLM) provided and open-sourced by inclusionAI. The project offers different sizes (Ling-lite, Ling-plus) and emphasizes flexibility and efficiency: being able to scale, adapt expert activation, and perform across a range of natural language/reasoning tasks. Example scripts, inference pipelines, and documentation. The codebase includes inference, examples, models, documentation, and model download infrastructure. As more developers and researchers engage with the platform, we can expect rapid advancements and improvements, leading to even more sophisticated applications. Model inference and API code (e.g. integration with Transformers). This collaborative approach accelerates development and ensures that the models remain at the forefront of technology, addressing emerging challenges in various fields.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MCPB

    MCPB

    One-click local MCP server installation in desktop apps

    MCPB (MCP Bundles) defines a packaging format and toolchain for one-click installation of local Model Context Protocol (MCP) servers in desktop apps like Claude for macOS and Windows. An .mcpb file is a zip archive containing your server and a manifest.json that declares capabilities, entry points, permissions, and configuration inputs, much like how .crx packages Chrome extensions or .vsix packages VS Code extensions. The goal is to make local tool servers easy for end users to install, update, and configure, while giving app developers a consistent way to discover and load them safely. The repository includes the bundle spec, a CLI to scaffold and pack bundles, and the loading/verification code used by Claude’s desktop apps, including support for auto-updates and a curated directory. It supports multiple implementation styles—Node.js, Python, or native binaries—and provides guidance on bundling dependencies so bundles run out-of-the-box.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with MobileCLIP2 variants matching or surpassing larger baselines at notably lower parameter counts and runtime on mobile devices. A companion “mobileclip-dr” repository details large-scale, distributed data-generation pipelines used to reinforce datasets across billions of samples on thousands of GPUs. Overall, MobileCLIP emphasizes end-to-end practicality: scalable training, deployable models, and consumer-grade demos.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    Qwen2.5-Math is a series of mathematics-specialized large language models in the Qwen2 family, released by Alibaba’s QwenLM. It includes base models (1.5B / 7B / 72B parameters), instruction-tuned versions, and a reward model (RM) to improve alignment. Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical benchmarks and exams; the 72B-Instruct model achieves state-of-the-art results among open source models on many English and Chinese math tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 10
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and action into a single agentic model capable of following abstract goals. It includes simulation environments, datasets, and benchmarks for testing grounded understanding, imitation learning, and decision-making. The system’s modular pipeline supports both imitation-based and reinforcement-based training strategies, allowing flexible experimentation with different embodiments and tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Stable-Dreamfusion

    Stable-Dreamfusion

    Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion

    A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. This project is a work-in-progress and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly! Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion model, which diffuses in a latent space instead of the original image space. Therefore, we need the loss to propagate back from the VAE's encoder part too, which introduces extra time costs in training. We use the multi-resolution grid encoder to implement the NeRF backbone (implementation from torch-ngp), which enables much faster rendering.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Surya

    Surya

    Implementation of the Surya Foundation Model for Heliophysics

    Surya is an open‑source, AI‑based foundation model for heliophysics developed collaboratively by NASA (via the IMPACT AI team) and IBM. Named after the Sanskrit word for “sun,” Surya is trained on nine years of high‑resolution solar imagery from NASA’s Solar Dynamics Observatory (SDO). It is designed to forecast solar phenomena—such as flares, solar wind, irradiance, and active region behavior—by predicting future solar images with a sophisticated long–short vision transformer architecture, thereby enabling improved space weather forecasting. Foresees solar flares, wind, EUV spectra, and active region formation in advance. Achieves approximately 16% improvement in forecasting accuracy over traditional methods. 366-million‑parameter foundation model capturing general-purpose solar representations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art accuracy and speed on TAP-Vid. RoboTAP demonstrates how TAPIR-style tracks can drive real-world robot manipulation via efficient imitation, and ships with a dataset of annotated robotics videos. The repo provides JAX and PyTorch checkpoints, Colab demos, and a real-time live demo that runs on a GPU to let you select and track points interactively.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support for dynamic scene handling, dense point cloud export, video-based reconstruction (1000+ frames), and integration with Gaussian Splatting pipelines. It leverages tools like PyCOLMAP, poselib, LightGlue, and PyTorch3D for feature matching, pose estimation, and visualization. With minimal configuration, users can process single scenes or full video sequences, apply motion masks to exclude moving objects, and train neural radiance or splatting models directly from reconstructed outputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal integration strategies that influenced modern architectures like SlowFast and X3D.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a large, monolithic codebase—fairseq2 introduces a clean, plugin-oriented architecture designed for long-term maintainability and rapid experimentation. It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Grok-1

    Grok-1

    Open-source, high-performance Mixture-of-Experts large language model

    Grok-1 is a 314-billion-parameter Mixture-of-Experts (MoE) large language model developed by xAI. Designed to optimize computational efficiency, it activates only 25% of its weights for each input token. In March 2024, xAI released Grok-1's model weights and architecture under the Apache 2.0 license, making them openly accessible to developers. The accompanying GitHub repository provides JAX example code for loading and running the model. Due to its substantial size, utilizing Grok-1 requires a machine with significant GPU memory. The repository's MoE layer implementation prioritizes correctness over efficiency, avoiding the need for custom kernels. This is a full repo snapshot ZIP file of the Grok-1 code.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    FLUX.1 Krea

    FLUX.1 Krea

    Powerful open source image generation model

    FLUX.1 Krea [dev] is an open-source 12-billion parameter image generation model developed collaboratively by Krea and Black Forest Labs, designed to deliver superior aesthetic control and high image quality. It is a rectified-flow model distilled from the original Krea 1, providing enhanced sampling efficiency through classifier-free guidance distillation. The model supports generation at resolutions between 1024 and 1280 pixels with recommended inference steps between 28 and 32 for optimal balance of speed and quality. FLUX.1 Krea is fully compatible with the FLUX.1 architecture, making it easy to integrate into existing workflows and pipelines. The repository offers easy-to-use inference scripts and a Jupyter Notebook example to facilitate quick experimentation and adoption. Users can run the model locally after downloading weights from Hugging Face and benefit from a live demo available on krea.ai.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 19
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging Face, allowing for easy access and customization. FinGPT's capabilities are extended by its ability to integrate with existing financial systems and enhance predictive analytics in finance.
    Leader badge
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed to work in real-world applications like mobile apps, robotics, and other resource-constrained environments.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    CSM (Conversational Speech Model)

    CSM (Conversational Speech Model)

    A Conversational Speech Generation Model

    The CSM (Conversational Speech Model) is a speech generation model developed by Sesame AI that creates RVQ audio codes from text and audio inputs. It uses a Llama backbone and a smaller audio decoder to produce audio codes for realistic speech synthesis. The model has been fine-tuned for interactive voice demos and is hosted on platforms like Hugging Face for testing. CSM offers a flexible setup and is compatible with CUDA-enabled GPUs for efficient execution.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Proximus for Ryzen AI

    Proximus for Ryzen AI

    Runtime extension of Proximus enabling Deployment on AMD Ryzen™ AI

    This project extends the Proximus development environment to support deployment of AI workloads on next-generation AMD Ryzen™ AI processors, such as the Ryzen™ AI 7 PRO 7840U featured in the Lenovo ThinkPad T14s Gen 4 ,one of the first true AI PCs with an onboard Neural Processing Unit (NPU) capable of 16 TOPS (trillion operations per second). Originally designed for use with Windows 11 Pro, this runtime was further enhanced to work under Linux environments, allowing developers and researchers to fully utilize the AMD AI Engine across both platforms. This cross-platform support is a major innovation, enabling AI workload portability, integration into CI environments, and deployment into Linux-based research and production pipelines.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Qwen2.5-Coder

    Qwen2.5-Coder

    Qwen2.5-Coder is the code version of Qwen2.5, the large language model

    Qwen2.5-Coder, developed by QwenLM, is an advanced open-source code generation model designed for developers seeking powerful and diverse coding capabilities. It includes multiple model sizes—ranging from 0.5B to 32B parameters—providing solutions for a wide array of coding needs. The model supports over 92 programming languages and offers exceptional performance in generating code, debugging, and mathematical problem-solving. Qwen2.5-Coder, with its long context length of 128K tokens, is ideal for a variety of use cases, from simple code assistants to complex programming scenarios, matching the capabilities of models like GPT-4o.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 1 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.