• Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Qwen-Image

    Qwen-Image

    Qwen-Image is a powerful image generation foundation model

    Qwen-Image is a powerful 20-billion parameter foundation model designed for advanced image generation and precise editing, with a particular strength in complex text rendering across diverse languages, especially Chinese. Built on the MMDiT architecture, it achieves remarkable fidelity in integrating text seamlessly into images while preserving typographic details and layout coherence. The model excels not only in text rendering but also in a wide range of artistic styles, including photorealistic, impressionist, anime, and minimalist aesthetics. Qwen-Image supports sophisticated editing tasks such as style transfer, object insertion and removal, detail enhancement, and even human pose manipulation, making it suitable for both professional and casual users. It also includes advanced image understanding capabilities like object detection, semantic segmentation, depth and edge estimation, and novel view synthesis.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 2
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The repository includes pretrained models for common tasks such as isolating vocals, drums, bass, and accompaniment from stereo music, achieving state-of-the-art results in benchmarks like MUSDB18. Demucs supports GPU-accelerated inference and can process multi-channel audio with chunked streaming for real-time or batch operation. It also provides training scripts and utilities to fine-tune on custom datasets, along with remixing and enhancement tools.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    DeepSeek V2

    DeepSeek V2

    Strong, Economical, and Efficient Mixture-of-Experts Language Model

    DeepSeek-V2 is the second major iteration of DeepSeek’s foundation language model (LLM) series. This version likely includes architectural improvements, training enhancements, and expanded dataset coverage compared to V1. The repository includes model weight artifacts, evaluation benchmarks across a broad suite (e.g. reasoning, math, multilingual), configuration files, and possibly tokenization / inference scripts. The V2 model is expected to support more advanced features like better context window handling, more efficient inference, better performance on challenging tasks, and stronger alignment with human feedback. Because DeepSeek is pushing open-weight competition, this V2 iteration is meant to solidify its position in benchmark rankings and in developer adoption. The code in the repository may include description files, support for tool use or plug-in architectures, and artifacts showing fine-tuning or prompt templates.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Downloads: 61 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 5
    Anthropic SDK TypeScript

    Anthropic SDK TypeScript

    Access to Anthropic's safety-first language model APIs

    anthropic-sdk-typescript is the TypeScript / JavaScript client library for the Anthropic REST API, enabling backend or Node.js usage of models like Claude. It wraps API endpoints for creating messages, streaming responses, and managing parameters in a type-safe TS environment. The library is designed for server-side use, interfacing with REST, and is stable for integration in web services or backend agents. Example usage shows how to instantiate the Anthropic client, call client.messages.create(...), and obtain responses. It supports streaming endpoints as well. Because TypeScript provides type safety, it helps avoid common errors in JSON interplay. The repo also includes documentation (API spec in api.md) and examples (e.g. streaming examples).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    Kitten TTS

    Kitten TTS

    State-of-the-art TTS model under 25MB

    KittenTTS is an open-source, ultra-lightweight, and high-quality text-to-speech model featuring just 15 million parameters and a binary size under 25 MB. It is designed for real-time CPU-based deployment across diverse platforms. Ultra-lightweight, model size less than 25MB. CPU-optimized, runs without GPU on any device. High-quality voices, several premium voice options available. Fast inference, optimized for real-time speech synthesis.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    OpenAI Harmony

    OpenAI Harmony

    Renderer for the harmony response format to be used with gpt-oss

    Harmony is a response format developed by OpenAI for use with the gpt-oss model series. It defines a structured way for language models to produce outputs, including regular text, reasoning traces, tool calls, and structured data. By mimicking the OpenAI Responses API, Harmony provides developers with a familiar interface while enabling more advanced capabilities such as multiple output channels, instruction hierarchies, and tool namespaces. The format is essential for ensuring gpt-oss models operate correctly, as they are trained to rely on this structure for generating and organizing their responses. For users accessing gpt-oss through third-party providers like HuggingFace, Ollama, or vLLM, Harmony formatting is handled automatically, but developers building custom inference setups must implement it directly. With its flexible design, Harmony serves as the foundation for creating more interpretable, controlled, and extensible interactions with open-weight language models.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    Transformer Debugger

    Transformer Debugger

    Tool for exploring and debugging transformer model behaviors

    Transformer Debugger (TDB) is a research tool developed by OpenAI’s Superalignment team to investigate and interpret the behaviors of small language models. It combines automated interpretability methods with sparse autoencoders, enabling researchers to analyze how specific neurons, attention heads, and latent features contribute to a model’s outputs. TDB allows users to intervene directly in the forward pass of a model and observe how such interventions change predictions, making it possible to answer questions like why a token was selected or why an attention head focused on a certain input. It automatically identifies and explains the most influential components, highlights activation patterns, and maps relationships across circuits within the model. The tool includes both a React-based neuron viewer for exploring model components and a backend activation server for running inferences and serving data.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 10
    gpt-oss

    gpt-oss

    gpt-oss-120b and gpt-oss-20b are two open-weight language models

    gpt-oss is OpenAI’s open-weight family of large language models designed for powerful reasoning, agentic workflows, and versatile developer use cases. The series includes two main models: gpt-oss-120b, a 117-billion parameter model optimized for general-purpose, high-reasoning tasks that can run on a single H100 GPU, and gpt-oss-20b, a lighter 21-billion parameter model ideal for low-latency or specialized applications on smaller hardware. Both models use a native MXFP4 quantization for efficient memory use and support OpenAI’s Harmony response format, enabling transparent full chain-of-thought reasoning and advanced tool integrations such as function calling, browsing, and Python code execution. The repository provides multiple reference implementations—including PyTorch, Triton, and Metal—for educational and experimental use, as well as example clients and tools like a terminal chat app and a Responses API server.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Anthropic SDK Python

    Anthropic SDK Python

    Provides convenient access to the Anthropic REST API from any Python 3

    The anthropic-sdk-python repository is the official Python client library for interacting with the Anthropic (Claude) REST API. It is designed to provide a user-friendly, type-safe, and asynchronous/synchronous capable interface for making chat/completion requests to models like Claude. The library includes definitions for all request and response parameters using Python typed objects, automatically handles serialization and deserialization, and wraps HTTP logic (timeouts, retries, error mapping) so that developers can call the API in a clean, high-level way. The SDK supports both synchronous and asynchronous usage (via async/await) depending on context. Importantly, it also supports streaming responses via Server-Sent Events (SSE) so that large outputs can be consumed incrementally rather than waiting for the full response. The client offers helper abstractions for tools (function-style “tools”) and streaming utilities for building interactive agents.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    CodeGeeX

    CodeGeeX

    CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)

    CodeGeeX is a large-scale multilingual code generation model with 13 billion parameters, trained on 850B tokens across more than 20 programming languages. Developed with MindSpore and later made PyTorch-compatible, it is capable of multilingual code generation, cross-lingual code translation, code completion, summarization, and explanation. It has been benchmarked on HumanEval-X, a multilingual program synthesis benchmark introduced alongside the model, and achieves state-of-the-art performance compared to other open models like InCoder and CodeGen. CodeGeeX also powers IDE plugins for VS Code and JetBrains, offering features like code completion, translation, debugging, and annotation. The model supports Ascend 910 and NVIDIA GPUs, with optimizations like quantization and FasterTransformer acceleration for faster inference.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    DeepSeek Math

    DeepSeek Math

    Pushing the Limits of Mathematical Reasoning in Open Language Models

    DeepSeek-Math is DeepSeek’s specialized model (or dataset + evaluation) focusing on mathematical reasoning, symbolic manipulation, proof steps, and advanced quantitative problem solving. The repository is likely to include fine-tuning routines or task datasets (e.g. MATH, GSM8K, ARB), demonstration notebooks, prompt templates, and evaluation results on math benchmarks. The goal is to push DeepSeek’s performance in domains that require rigorous symbolic steps, calculus, linear algebra, number theory, or multi-step derivations. The repo may also include modules that integrate external computational tools (e.g. a CAS / computer algebra system) or calculator assistance backends to enhance correctness. Because math reasoning is a high bar for LLMs, DeepSeek-Math aims to showcase their model’s ability not just in natural text but in precise formal reasoning.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations. The design tackles long-standing conflicts in multimodal models: namely that the visual encoder has to serve both analysis (understanding) and synthesis (generation) roles. By splitting those pathways but keeping one unified core transformer, Janus maintains flexibility and achieves strong performance across tasks previously requiring distinct architectures. The repository includes pretrained checkpoints (for example 1.3B and 7B parameter versions), a Gradio demo, and guidance for local deployment.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    Qwen2-Audio is a large audio-language model by Alibaba Cloud, part of the Qwen series. It is trained to accept various audio signal inputs (including speech, sounds, etc.) and perform both voice chat and audio analysis, producing textual responses. It supports two major modes: Voice Chat (interactive voice only input) and Audio Analysis (audio + text instructions), with both base and instruction-tuned models. It is evaluated on many benchmarks (speech recognition, translation, sound classification, emotion, etc.), and offers pretrained models (e.g. 7B) released via ModelScope and Hugging Face. Code & examples provided with Hugging Face transformers, and usage via AutoProcessor, model classes etc. High performance on many standard benchmarks: ASR, speech-emotion recognition, vocal sound classification, speech translation etc.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Stable Diffusion Version 2

    Stable Diffusion Version 2

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion (the stablediffusion repo by Stability-AI) is an open-source implementation and reference codebase for high-resolution latent diffusion image models that power many text-to-image systems. The repository provides code for training and running Stable Diffusion-style models, instructions for installing dependencies (with notes about performance libraries like xformers), and guidance on hardware/driver requirements for efficient GPU inference and training. It’s organized as a practical, developer-focused toolkit: model code, scripts for inference, and examples for using memory-efficient attention and related optimizations are included so researchers and engineers can run or adapt the model for their own projects. The project sits within a larger ecosystem of Stability AI repositories (including inference-only reference implementations like SD3.5 and web UI projects) and the README points users toward compatible components, recommended CUDA/PyTorch versions.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    Stable Diffusion Web UI Extensions

    Stable Diffusion Web UI Extensions

    Extension index for stable-diffusion-webui

    This repository serves as the official index used by the Stable Diffusion Web UI to discover and install extensions. It aggregates metadata for hundreds of community plugins—image utilities, ControlNet tools, upscalers, prompt helpers, animation suites—so users can browse and add capabilities directly from the UI. The index maintains short descriptions, tags, and repository links, enabling quick filtering by purpose or workflow. It also standardizes submission format so extension authors can contribute entries that the Web UI can parse reliably. For end users, this turns the Web UI into a modular platform where new features appear without manual cloning or guesswork. The project effectively coordinates a thriving plugin ecosystem, keeping discovery and updates lightweight and centralized.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and reinforcement learning; supports benchmarks like web search, document understanding, question answering, “agentic” tasks; provides inference tools, evaluation scripts, and “web agent” style interfaces. The aim is to enable more autonomous, agentic models that can perform sustained knowledge gathering, reasoning, and synthesis across multiple modalities (web, files, etc.).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to process visual inputs as context for downstream tasks. The repository includes evaluation results (e.g. image/text alignment scores, common VL benchmarks), configuration files, and model weights (where permitted). While the internal architecture details are not fully documented publicly, the repo suggests that VL2 introduces enhancements over prior vision-language models (e.g. better scaling, cross-modal attention, more robust alignment) to improve grounding and multimodal understanding.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The repo and research page emphasize boundary fidelity and crisp geometry, addressing a common weakness in monocular depth where edges can blur. Community integrations (e.g., inference wrappers and UI nodes) have sprung up around the model, reflecting practical interest in video, AR, and generative pipelines. As a general-purpose monocular depth backbone, Depth Pro slots into 3D reconstruction, relighting, and scene understanding workflows that benefit from metric predictions.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    GPT Discord Bot

    GPT Discord Bot

    Example Discord bot written in Python that uses the completions API

    GPT Discord Bot is an example project from OpenAI that shows how to integrate the OpenAI API with Discord using Python. The bot uses the Chat Completions API (defaulting to gpt-3.5-turbo) to carry out conversational interactions and the Moderations API to filter user messages. It is built on top of the discord.py framework and the OpenAI Python library, providing a simple, extensible template for building AI-powered Discord applications. The bot supports a /chat command that spawns a public thread, carries full conversation context across messages, and gracefully closes the thread when context or message limits are reached. Developers can customize system instructions through a config file and modify the model used for responses. While minimal, this project offers a clear example of how to set up authentication, permissions, and message handling for deploying a functional GPT-powered chatbot in Discord.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with diffusion-based ensemble forecasting for probabilistic weather prediction. Both models are built on JAX and integrate advanced neural architectures capable of learning from multi-scale geophysical data represented on icosahedral meshes. The package includes pretrained model weights, normalization statistics, and demonstration notebooks that allow users to replicate and fine-tune weather forecasting experiments in Colab or on Google Cloud TPUs and GPUs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available. It supports both text and audio inputs to generate outputs in various forms, including voice cloning, emotion control, and interactive role-playing.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    AICommand

    AICommand

    ChatGPT integration with Unity Editor

    AICommand is a proof-of-concept integration that lets you control the Unity Editor using natural language via ChatGPT. Instead of manually hunting through menus or writing editor scripts, you can prompt the editor to perform tasks, generate snippets, and automate actions. The project showcases an emerging workflow where LLMs augment game and tooling development by understanding intent and producing editor-side outcomes. It provides a minimal setup that connects your OpenAI API key and surfaces a command window right inside Unity. The aim is to experiment with agentic assistance inside the editor loop, turning repetitive steps into promptable actions. While positioned as experimental, it demonstrates the potential of pairing Unity’s extensibility with AI-driven command execution.
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.