Compare the Top AI Models in the USA as of November 2025

What are AI Models in the USA?

AI models are systems designed to simulate human intelligence by learning from data and solving complex tasks. They include specialized types like Large Language Models (LLMs) for text generation, image models for visual recognition and editing, and video models for processing and analyzing dynamic content. These models power applications such as chatbots, facial recognition, video summarization, and personalized recommendations. Their capabilities rely on advanced algorithms, extensive training datasets, and robust computational resources. AI models are transforming industries by automating processes, enhancing decision-making, and enabling creative innovations. Compare and read user reviews of the best AI Models in the USA currently available using the table below. This list is updated regularly.

  • 1
    ESMFold
    ESMFold shows how AI can give us new tools to understand the natural world, much like the microscope, which enabled us to see into the world at an infinitesimal scale and opened up a whole new understanding of life. AI can help us understand the immense scope of natural diversity, and see biology in a new way. Much of AI research has focused on helping computers understand the world in a way similar to how humans do. The language of proteins is one that is beyond human comprehension and has eluded even the most powerful computational tools. AI has the potential to open up this language to our understanding. Studying AI in new domains such as biology can also give insight into artificial intelligence more broadly. Our work reveals connections across domains: large language models that are behind advances in machine translation, natural language understanding, speech recognition, and image generation are also able to learn deep information about biology.
    Starting Price: Free
  • 2
    Evo 2

    Evo 2

    Arc Institute

    Evo 2 is a genomic foundation model capable of generalist prediction and design tasks across DNA, RNA, and proteins. It utilizes a frontier deep learning architecture to model biological sequences at single-nucleotide resolution, achieving near-linear scaling of compute and memory relative to context length. Trained with 40 billion parameters and a 1 megabase context length, Evo 2 processes over 9 trillion nucleotides from diverse eukaryotic and prokaryotic genomes. This extensive training enables Evo 2 to perform zero-shot function prediction across multiple biological modalities, including DNA, RNA, and proteins, and to generate novel sequences with plausible genomic architecture. The model's capabilities have been demonstrated in tasks such as designing functional CRISPR systems and predicting disease-causing mutations in human genes. Evo 2 is publicly accessible via Arc's GitHub repository and is integrated into the NVIDIA BioNeMo framework.
  • Previous
  • You're on page 1
  • Next