1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
\name{empinf}
\alias{empinf}
\title{
Empirical Influence Values
}
\description{
This function calculates the empirical influence values for a
statistic applied to a data set. It allows four types of calculation,
namely the infinitesimal jackknife (using numerical differentiation),
the usual jackknife estimates, the \sQuote{positive} jackknife
estimates and a method which estimates the empirical influence values
using regression of bootstrap replicates of the statistic. All
methods can be used with one or more samples.
}
\usage{
empinf(boot.out = NULL, data = NULL, statistic = NULL,
type = NULL, stype = NULL ,index = 1, t = NULL,
strata = rep(1, n), eps = 0.001, ...)
}
\arguments{
\item{boot.out}{
A bootstrap object created by the function \code{boot}. If
\code{type} is \code{"reg"} then this argument is required. For any
of the other types it is an optional argument. If it is included
when optional then the values of \code{data}, \code{statistic},
\code{stype}, and \code{strata} are taken from the components of
\code{boot.out} and any values passed to \code{empinf} directly are
ignored.
}
\item{data}{
A vector, matrix or data frame containing the data for which
empirical influence values are required. It is a required argument
if \code{boot.out} is not supplied. If \code{boot.out} is supplied
then \code{data} is set to \code{boot.out$data} and any value
supplied is ignored.
}
\item{statistic}{
The statistic for which empirical influence values are required. It
must be a function of at least two arguments, the data set and a
vector of weights, frequencies or indices. The nature of the second
argument is given by the value of \code{stype}. Any other arguments
that it takes must be supplied to \code{empinf} and will be passed
to \code{statistic} unchanged. This is a required argument if
\code{boot.out} is not supplied, otherwise its value is taken from
\code{boot.out} and any value supplied here will be ignored.
}
\item{type}{
The calculation type to be used for the empirical influence
values. Possible values of \code{type} are \code{"inf"}
(infinitesimal jackknife), \code{"jack"} (usual jackknife),
\code{"pos"} (positive jackknife), and \code{"reg"} (regression
estimation). The default value depends on the other arguments. If
\code{t} is supplied then the default value of \code{type} is
\code{"reg"} and \code{boot.out} should be present so that its
frequency array can be found. It \code{t} is not supplied then if
\code{stype} is \code{"w"}, the default value of \code{type} is
\code{"inf"}; otherwise, if \code{boot.out} is present the default
is \code{"reg"}. If none of these conditions apply then the default
is \code{"jack"}. Note that it is an error for \code{type} to be
\code{"reg"} if \code{boot.out} is missing or to be \code{"inf"} if
\code{stype} is not \code{"w"}.
}
\item{stype}{
A character variable giving the nature of the second argument to
\code{statistic}. It can take on three values: \code{"w"} (weights),
\code{"f"} (frequencies), or \code{"i"} (indices). If
\code{boot.out} is supplied the value of \code{stype} is set to
\code{boot.out$stype} and any value supplied here is ignored.
Otherwise it is an optional argument which defaults to \code{"w"}.
If \code{type} is \code{"inf"} then \code{stype} MUST be
\code{"w"}.
}
\item{index}{
An integer giving the position of the variable of interest in the
output of \code{statistic}.
}
\item{t}{
A vector of length \code{boot.out$R} which gives the bootstrap
replicates of the statistic of interest. \code{t} is used only when
\code{type} is \code{reg} and it defaults to
\code{boot.out$t[,index]}.
}
\item{strata}{
An integer vector or a factor specifying the strata for multi-sample
problems. If \code{boot.out} is supplied the value of \code{strata}
is set to \code{boot.out$strata}. Otherwise it is an optional
argument which has default corresponding to the single sample
situation.
}
\item{eps}{
This argument is used only if \code{type} is \code{"inf"}. In that
case the value of epsilon to be used for numerical differentiation
will be \code{eps} divided by the number of observations in
\code{data}.
}
\item{\dots}{
Any other arguments that \code{statistic} takes. They will be
passed unchanged to \code{statistic} every time that it is called.
}
}
\section{Warning}{
All arguments to \code{empinf} must be passed using the \code{name =
value} convention. If this is not followed then unpredictable
errors can occur.
}
\value{
A vector of the empirical influence values of \code{statistic} applied
to \code{data}. The values will be in the same order as the
observations in data.
}
\details{
If \code{type} is \code{"inf"} then numerical differentiation is used
to approximate the empirical influence values. This makes sense only
for statistics which are written in weighted form (i.e. \code{stype}
is \code{"w"}). If \code{type} is \code{"jack"} then the usual
leave-one-out jackknife estimates of the empirical influence are
returned. If \code{type} is \code{"pos"} then the positive
(include-one-twice) jackknife values are used. If \code{type} is
\code{"reg"} then a bootstrap object must be supplied. The regression
method then works by regressing the bootstrap replicates of
\code{statistic} on the frequency array from which they were derived.
The bootstrap frequency array is obtained through a call to
\code{boot.array}. Further details of the methods are given in
Section 2.7 of Davison and Hinkley (1997).
Empirical influence values are often used frequently in nonparametric
bootstrap applications. For this reason many other functions call
\code{empinf} when they are required. Some examples of their use are
for nonparametric delta estimates of variance, BCa intervals and
finding linear approximations to statistics for use as control
variates. They are also used for antithetic bootstrap resampling.
}
\references{
Davison, A.C. and Hinkley, D.V. (1997)
\emph{Bootstrap Methods and Their Application}. Cambridge University Press.
Efron, B. (1982) \emph{The Jackknife, the Bootstrap and Other
Resampling Plans}. CBMS-NSF Regional Conference Series in Applied
Mathematics, \bold{38}, SIAM.
Fernholtz, L.T. (1983) \emph{von Mises Calculus for Statistical Functionals}.
Lecture Notes in Statistics, \bold{19}, Springer-Verlag.
}
\seealso{
\code{\link{boot}}, \code{\link{boot.array}}, \code{\link{boot.ci}},
\code{\link{control}}, \code{\link{jack.after.boot}},
\code{\link{linear.approx}}, \code{\link{var.linear}}
}
\examples{
# The empirical influence values for the ratio of means in
# the city data.
ratio <- function(d, w) sum(d$x *w)/sum(d$u*w)
empinf(data = city, statistic = ratio)
city.boot <- boot(city, ratio, 499, stype="w")
empinf(boot.out = city.boot, type = "reg")
# A statistic that may be of interest in the difference of means
# problem is the t-statistic for testing equality of means. In
# the bootstrap we get replicates of the difference of means and
# the variance of that statistic and then want to use this output
# to get the empirical influence values of the t-statistic.
grav1 <- gravity[as.numeric(gravity[,2]) >= 7,]
grav.fun <- function(dat, w) {
strata <- tapply(dat[, 2], as.numeric(dat[, 2]))
d <- dat[, 1]
ns <- tabulate(strata)
w <- w/tapply(w, strata, sum)[strata]
mns <- as.vector(tapply(d * w, strata, sum)) # drop names
mn2 <- tapply(d * d * w, strata, sum)
s2hat <- sum((mn2 - mns^2)/ns)
c(mns[2] - mns[1], s2hat)
}
grav.boot <- boot(grav1, grav.fun, R = 499, stype = "w",
strata = grav1[, 2])
# Since the statistic of interest is a function of the bootstrap
# statistics, we must calculate the bootstrap replicates and pass
# them to empinf using the t argument.
grav.z <- (grav.boot$t[,1]-grav.boot$t0[1])/sqrt(grav.boot$t[,2])
empinf(boot.out = grav.boot, t = grav.z)
}
\keyword{nonparametric}
\keyword{math}
|