Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento
Mostrando entradas con la etiqueta telescopio. Mostrar todas las entradas
Mostrando entradas con la etiqueta telescopio. Mostrar todas las entradas

El ojo que ve el universo

Hubble 01
El telescopio Hubble después de ser puesto
en órbita por el transbordador Discovery
(Foto D.P. NASA vía Wikimedia Commons)
Durante 21 años, el telescopio espacial Hubble nos ha enseñado a ver el universo de un modo que no había sido posible en toda la historia humana.

Hace apenas 20 años el universo tenía un aspecto totalmente distinto a nuestros ojos del que hoy conocemos gracias a los cientos de miles de imágenes que el telescopio orbital Hubble ha estado transmitiendo con sus observaciones, participando en numerosos proyectos de grupos de astrónomos de todo el mundo y asombrando con su visión literalmente extraterrenal a muy diversas personas, con o sin interés en la astronomía.

Por primera vez hemos visto los límites del universo, enormes nubes de gases que son incubadoras donde se están formando nuevas estrellas en grandes cantidades, evidencias de agujeros negros en los que cabrían millones de soles, explosiones de estrellas o supernovas con una potencia inimaginable, los fragmentos de un cometa cayendo sobre Júpiter, planetas en otros sistemas solares, galaxias colisionando y fusionándose… material de ciencia ficción convertido en imágenes, datos, conocimiento y nuevas avenidas para la investigación.

Y sin embargo, la historia de este extraordinario instrumento científico comenzó definitivamente con el pie izquierdo.

Los astrónomos se plantearon desde principios del siglo XX tener en órbita un telescopio óptico, es decir, capaz de observar la luz visible (a diferencia de telescopios dedicados a otros segmentos del espectro electromagnético, como los radiotelescopios o los telescopios de rayos X).

Los telescopios ópticos en la superficie del planeta enfrentan problemas como la contaminación lumínica de fuentes como poblados o instalaciones que dificultan la visión de objetos especialmente tenues, y sobre todo las distorsiones en sus observaciones que introduce
La propia atmósfera misma. Las distintas capas de la atmósfera, con características y temperaturas variadas, distorsionan la luz que llega del universo. Es precisamente por ello que las estrellas parecen titilar cuando las miramos.

Un telescopio en órbita evitaría esos y otros problemas, lo que le permitiría ver más allá, y con mucha más nitidez, que cualquier aparato que pudiéramos construir en el suelo.

En 1969, la NASA aprobó el proyecto de un gran telescopio orbital que pondría en órbita el transbordador espacial. En 1975 la Agencia Espacial Europea se unió al proyecto. Sin embargo, el lanzamiento previsto para octubre de 1986 se pospuso debido a la explosión del transbordador Challenger en enero de ese mismo año, y no se lanzaría sino hasta el 24 de abril de 1990.

“Está fuera de foco”.

Este fue el diagnóstico de los técnicos que vierosn las primeras fotografías transmitidas a tierra desde el nuevo telescopio Hubble hace 21 años parecían anunciar uno de los más complicados, costosos y absurdos fiascos de la historia: el gran telescopio con la mejor tecnología de la época estaba fuera de foco. Una cadena de errores humanos dio como resultado que el espejo principal del telescopio tuviera una aberración esférica (una desviación de la curva que lo hacía demasiado plano en el centro por unas fracciones de milímetro) que no se detectó por otra cadena de errores.

La solución fue añadir un grupo de pequeños espejos para interceptar la luz que se reflejaba del espejo principal, corregir la falla y devolver la luz a los instrumentos de observación. Estas y otras tareas fueron realizadas en la primera reparación espacial llevada a cabo durante 10 largos días en diciembre de 1993. El éxito de este trabajo se confirmó con las primeras imágenes que conocimos en 1994, y que mostraron un universo mucho más asombroso de lo que habíamos imaginado hasta entonces. Más complejo, más diverso, más misterioso…

Y arrolladoramente hermoso.

Muchas de las imágenes que nos han cautivado del Hubble durante estos años han sido objetos ya conocidos, que habíamos visto con menos precisión, borrosos, tenues. Pero muchas más han sido imágenes inéditas de sitios de nuestro universo que nunca habíamos visto realmente, zonas del cielo que parecían poco pobladas y que están en realidad llenas no sólo de estrellas, sino de galaxias que se extienden hasta el borde mismo del universo.

Los más diversos grupos de astrónomos, de cualquier país e institución, pueden pedir tiempo para realizar observaciones con este fino instrumento, y de hecho todos los descubrimientos han sido realizados por distintos grupos de astrónomos, que año con año presentan proyectos para usar el Hubble unos minutos o unas horas. Los datos que obtienen los pueden usar en exclusiva durante un año, y después se convierten en dominio público, patrimonio de toda la humanidad.

Así es como hemos obtenido evidencia de algunos de los objetos más extraños del universo: los agujeros negros, llamados así porque su masa y densidad les dota de un campo gravitacional tan poderoso que ni la luz puede escapar de ellos. Aunque no podemos verlos, podemos ver el comportamiento de la materia a su alrededor, como agua yéndose por un caño en una gigantesca espiral. Con el Hubble se han hallado indicios de numerosos agujeros negros supermasivos, que tienen la masa de millones de estrellas, en el centro de muchas galaxias, sugiriendo que se trata de elementos bastante comuness. También ha descubierto objetos que nunca habíamos visto antes, y de los que sabemos muy poco, como el llamado, no muy glamorosamente, SCP 06F6.

Pero quizá el más asombroso descubrimiento es que la expansión del universo en sus bordes está acelerándose por motivos que aún no conocemos, a los que damos el nombre general de “energía oscura”, algo que debe existir pero no hemos percibido aún.

En total, en sus 21 años de servicio, el telescopio Hubble ha sido visitado para realizar tareas como cambiar algunos instrumentos y cámaras por otros más modernos o eficaces, mejorar sus paneles solares, cambiar los giroscopios que mantienen su estabilidad y otras operaciones que lo han ido mejorando.

Con lo hecho hasta ahora, el telescopio espacial Hubble deberá seguir funcionando hasta 2013, cuando menos. Dado que orbita nuestro planeta en las capas superiores, muy tenues, de la atmósfera, a unos 559 kilómetros de altitud, su órbita se degradará poco a poco, cayendo a tierra en algún momento entre 2019 y 2021 y dejando como legado un profundo cambio en nuestra percepción del curioso lugar donde vivimos.

El origen del nombre

El telescopio espacial Hubble debe su nombre a Edwin Hubble (1889-1953), astrofísico estadounidense que, como lo haría el telescopio, amplió nuestro concepto del universo. Hubble demostró que era errónea la idea de que el universo era sólo nuestra galaxia, y confirmó la existencia de otras galaxias. Al mismo tiempo, ayudó a demostrar que nuestro universo está en expansión hasta los bordes que ahora hemos podido ver.

Ver el universo visible e invisible

Telescopios del observatorio de Roque de los
Muchachos en La Palma de Gran Canaria.
(Foto de Bob Tubbs, Wikimedia Commons)
Hace 400 años, Galileo Galilei utilizó el telescopio, inventado un año antes probablemente por Hans Lippershey, para mirar a los cielos sobre Venecia, y cambió no sólo el mundo, sino todo el universo, al menos desde el punto de vista de la humanidad.

Los conceptos que el ser humano había desarrollado respecto del cosmos que lo rodea habían estado hasta entonces limitados únicamente por lo que se podía ver con el ojo desnudo en una noche despejada, lo que dejaba una enorme libertad para crear conceptos filosóficos que pudieran explicar las observaciones.

Las descripciones del cosmos cambiaban según la cultura y la época. Por ejemplo, para los indostanos, según el antiguo Rigveda, el universo vivía una eterna alternancia cíclica en la que se expandía y contraía, latiendo como un corazón. Esta idea se ajustaba a la creencia de que todo en el universo vive un ciclo permanente de nacimiento, muerte y renacimiento. Para los estoicos griegos, sin embargo, era una isla finita rodeada de un vacío infinito que sufría cambios constantes. Y para el filósofo griego Aristarco, la Tierra giraba sobre sí misma y alrededor del sol, conjunto rodeado por esferas celestiales que tienen como centro el sol, una visión heliocéntrica.

La cosmología que se había declarado oficialmente aceptada por el occidente cristiano era la de Claudio Ptolomeo, basada en el modelo de Aristóteles. En esta visión, el universo tiene como centro a nuestro planeta, inmóvil, rodeado por cuerpos celestiales perfectos que giran a su alrededor, y existe sin cambios para toda la eternidad.

Este modelo se ajustaba bien a la visión cristiana de la creación y el orden divino, y fue asumido como el aceptado en la Europa a la que Galileo sacudiría con su telescopio mediante el sencillísimo procedimiento de mirar hacia los cielos con el telescopio.

El telescopio de Galileo constaba simplemente de un tubo con dos lentes, una convexa en un extremo y una lente ocular cóncava por la que se miraba. Este telescopio se llamó “de refracción” precisamente porque refracta o redirige la luz para intensificarla y magnificarla. 59 años después, Newton erplanteaba el telescopio por medio de la reflexión de la luz, consiguiendo así un instrumento mucho más preciso.

Los telescopios de reflexión, o newtonianos, fueron la principal herramienta que tuvo la humanidad para la exploración del universo durante siglos. Permitió conocer mejor el sistema solar, ver más allá de él y comprender que ni la Tierra ni el Sol eran el centro del cosmos. La tecnología se ocupó de crear espejos cada vez más grandes y precisos para ver mejor y más lejos.

Pero hasta 1937, solamente podíamos percibir la luz visible del universo, un fragmento muy pequeño de lo que conocemos como el espectro electromagnético. En las longitudes de onda más pequeñas y de mayor frecuencia que el color violeta tenemos los rayos UV, los rayos X y los rayos gamma. En longitudes de onda más grandes que el color rojo y a frecuencias más bajas están la radiación infrarroja, las microondas y las ondas de radio.

En 1931, el físico estadounidense Karl Guthe Jansky descubrió que la Vía Láctea emitía ondas de radio, y en 1937 Grote Reber construyó el primer radiotelescopio, que era en realidad una gigantesca antena parabólica diseñada para recibir y amplificar ondas de radio provenientes del cosmos.

Lo que sobrevino entonces fue un estallido de información. El universo estaba animadamente activo en diversas frecuencias de radio, con fuentes de emisión hasta entonces desconocidas por todas partes. Surgían numerosísimos hechos que la cosmología tenía que estudiar para poder explicar.

Al descubrirse en 1964 la radiación de fondo de microondas cósmicas, empezaron a utilizarse los radiotelescopios para explorar el universo en esta frecuencia y longitud de onda. Si miramos el universo visible, el fondo es negro, sin luz, pero si lo miramos en la frecuencia de las microondas, hay un “resplandor” de microondas que es igual en todas direcciones y a cualquier distancia, asunto que resultó sorprendente.

El estudio del comportamiento del universo a nivel de microondas nos permitió saber que la radiación cósmica de fondo descubierta por Amo Penzias y Robert Wilson en 1964 era en realidad el “eco” del Big Bang, la gran explosión que dio origen al universo, y es una de las evidencias más convincentes de que nuestro cosmos tuvo un inicio hace alrededor de 13.800 millones de años.

Sin embargo, las microondas más cortas no pudieron ser estudiadas a fondo sino hasta 1989, cuando se puso en órbita el telescopio orbital Background Explorer. Las microondas más cortas son absorbidas por nuestra atmósfera, debilitándolas enormemente, mientras que en el espacio se las puede percibir y registrar con mucha mayor claridad.

La exploración espacial también permitió poner en órbita otros telescopios que detectaran niveles de radiación de los que nuestra atmósfera nos protege. Tal es el caso de los telescopios de rayos Gamma, que nos han permitido detectar misteriosas explosiones de rayos gamma que podrían ser indicación del surgimiento de agujeros negros por todo el universo.

Por su parte, los telescopios de rayos X también deben funcionar fuera de la atmósfera terrestre y nos informan de la actividad de numerosos cuerpos, como los agujeros negros, las estrellas binarias, y los restos de estrellas que hayan estallado formando una supernova.

El estudio del universo a nivel de rayos ultravioleta también debe hacerse desde órbita, mientras que los telescopios que estudian los rayos infrarrojos sí se pueden ubicar en la superficie del planeta, muchas veces utilizando los telescopios ópticos que siguen siendo utilizados por astrónomos profesionales y aficionados para conocer el universo visible.

Sin embargo, pese a la gran cantidad de información que los astrónomos obtienen de todo el espectro electromagnético, es lo visible lo que sigue capturando la atención del público en general. Cualquier explicación del universo palidece ante las extraordinarias imágenes que nos ha ofrecido el Hubble, que además de ver en frecuencia ultravioleta es, ante todo, un telescopio óptico. Liberado de la interferencia de la atmósfera, el Hubble nos ha dado no sólo información cosmológica de gran importancia para entender el universo... nos ha dado experiencias estéticas y emocionales profundas al mostrarnos cómo es nuestra gran casa cósmica.

Los telescopios espaciales europeos

Aunque el telescopio espacial Hubble es en realidad una colaboración entre la NASA y la agencia espacial europea ESA, Europa también tiene un programa propio de telescopios espaciales. Apenas en mayo, se lanzaron dos telescopios orbitales que pronto empezarán a ofrecer resultados, el Herschel, de infrarrojos, y el Planck, dedicado a las microondas de la radiación cósmica.

Galileo, el rebelde renuente

Galileo Galilei, retrato
de Ottavio Leoni
En 2009, el Vaticano develará una estatua de Galileo Galilei en sus jardines, en capítulo más de un desencuentro originado en 1613 cuyos efectos siguen marcando a la ciencia y a la iglesia.

El choque que protagonizaron Galileo Galilei y la Inquisición a principios del siglo XVII es uno de los momentos más famosos de la historia del pensamiento científico, pero no siempre bien conocido, sino rodeado de leyendas y verdades a medias.

Nacido en Pisa, Italia, en 1564, Galileo Galilei se inclinó por las matemáticas llegando a ocupar la cátedra en su ciudad natal con apenas 25 años de edad. Tres años después, en 1592, fue a la Universidad de Padua, donde fue durante 18 años profesor de geometría, mecánica y astronomía, además de realizar importantes trabajos de investigación en física, matemáticas y astronomía que le llevaron a proponer algunos fundamentos esenciales del método científico, como la confianza en experimentos que pudieran ser analizados matemáticamente, la fidelidad a los experimentos aunque contradijeran creencias existentes, y la negativa a aceptar ciegamente la autoridad, implicando que se puede, y debe, cuestionar la autoridad si los datos la contradicen.

En 1608, basado en descripciones generales del telescopio inventado muy poco antes en Holanda, Galileo empezó a construir los propios para observar el cosmos. Así, el 7 de junio de 1610, descubrió tres pequeñas estrellas cerca de Júpiter, y durante las siguientes noches pudo observar que se movían, que al parecer pasaban por detrás de Júpiter, y reaparecían. No tardó en concluir que eran lunas en órbita alrededor de Júpiter, y el 13 de enero descubrió la cuarta. El anuncio de este descubrimiento, el de un cuerpo celeste alrededor del cual orbitaban otros, contradecía el modelo geocéntrico, según el cual todos los cuerpos del universo giraban alrededor de nuestro planeta. Sus datos fueron recibidos con suspicacia por astrónomos y filósofos, más cuando, en septiembre de ese año, describió las fases de Venus, similares a las de la Luna, lo que apoyaba al modelo heliocéntrico de Copérnico, señalando que el Sol era el centro del universo. Otras observaciones problemáticas de Galileo fueron las de las manchas solares y de las montañas y cráteres de la Luna. La filosofía vigente consideraba que los cielos eran la expresión de la perfección invariable de la creación, y para Aristóteles los cuerpos astronómicos eran esferas absolutamente perfectas, sin manchas ni irregularidades.

La descripción de sus observaciones astronómicas en sus obras El mensajero estelar de 1610 y Cartas sobre las manchas solares en 1613, abiertamente copernicana, iniciaron la controversia. En una prédica, el Padre Niccolo Lorini, fraile dominico y profesor de historia eclesiástica en Florencia, declaró que la idea copernicana violaba las escrituras. Galileo respondió en su Carta a Castelli, diciendo que las escrituras en no siempre debían interpretarse en sentido literal. El objetivo de Galileo era reconciliar a las escrituras con sus descubrimientos, pero Lorini mandó en 1615 a la Inquisición un ejemplar de la Carta a Castelli modificado a conveniencia para hacer más radical a Galileo, acompañado de sus observaciones compartidas por “todos los padres del Convento de San Marcos”. La Inquisición nombró a 11 teólogos para que calificaran el tema. Las proposición que debían evaluar eran “1. El sol es el centro del mundo y totalmente inamovible de su lugar” y “2. La tierra no es el centro del mundo, ni es inamovible, sino que se mueve en su totalidad, también con movimiento diurno”. Ambas proposiciones fueron rechazadas unánimemente por los calificadores, y consideradas contradictorias con las Sagradas Escrituras “en muchos pasajes”. El resultado fue comunicado a Galileo y se le ordenó abandonar los puntos de vista copernicanos.

Las consecuencias del decreto fueron diversas, entre ellas que la obra de Copérnico fuera incluida en el Index de libros prohibidos. Y la duda central que lo rodeaba era si la orden a Galileo fue solamente de no “sostener y defender” las ideas copernicanas aunque pudieran debatirse en términos hipotéticos, o si se le había exigido que “no enseñara” tales teorías, lo cual implicaba la prohibición de mencionarlas siquiera, incluso como malos ejemplos. Pero este problema se presentaría mucho después. Galileo, pese a todo, era miembro de la Academia de los Linces, la antecesora de la actual Academia Pontificia de las Ciencias, respetado profesor y un error teológico no implicaba un desastre. El Papa le garantizó a Galileo su seguridad, sus obras no fueron prohibidas y su posición académica y social se conservó.

Galileo obtuvo permiso formal de la Inquisición para realizar un libro que presentara una visión equilibrada de las teorías de Copérnico y de la iglesia, que fue su Diálogo referente a los dos principales sistemas del mundo, publicado en 1632 con gran éxito de ventas, adicionalmente. El libro era claramente parcial a la teoría de Copérnico, por lo que a los seis meses se suspendió su publicación y se ordenó al astrónomo comparecer ante el temible tribunal como sospechoso de herejía por haber violentado el mandato del que había sido objeto en 1616. Diez cardenales lo sometieron a un juicio paródico donde el tema no era la verdad o falsedad de las proposiciones de Copérnico, ese tema se había agotado en 1616, sino la desobediencia del astrónomo al publicar su nueva obra. Los evaluadores del Diálogo habían dictaminado que era parcial al copernicanismo, y antes del juicio mismo la iglesia ya había debatido qué hacer con el astrónomo. Aunque Galileo estaba dispuesto a cambiar de “opinión” y reconocer su “error”, los cardenales decidieron exigirle la abjuración del copernicanismo en un plenario del Santo Oficio, lo que ocurrió el 22 de junio de 1633. La sentencia fue que se prohibiera la circulación del Diálogo y que el astrónomo de casi 70 años fuera encarcelado sin plazo fijo a criterio de la inquisición. Entregado al embajador de Florencia, a fines de 1633 se le permitió lo que hoy se llamaría prisión domiciliaria en su granja de Arcetri, donde, ciego por sus observaciones del sol sin protección alguna para sus retinas, moriría en 1641.

Y en 1992...

Habían pasado 376 años desde la decisión de los calificadores sobre la inaceptabilidad del heliocentrismo cuando, ante la Academia Pontificia de las Ciencias, el Papa reinante Juan Pablo II declaró oficialmente que Galileo tenía razón. Pero para ello no se basó en la evidencia científica apabullante reunida durante casi cuatro siglos, sino en las conclusiones de un comité nombrado por el Papa en 1979, mismo que decidió que la Inquisición había actuado “de buena fe” pero se había equivocado. Paradójicamente, el renacimiento llegaba al Vaticano.

Un universo ordenado

Isaac Newton, casi desconocido como persona, es uno de los más grandes genios y uno de los seres humanos que mayor influencia ha ejercido en la historia humana.

El día de navidad de 1642 (4 de enero de 1642 en el calendario actual) nacía en el pequeño poblado de Woolsthorpe, condado de Lincolnshire, en la costa oriental inglesa, un niño prematuro, hijo póstumo de un terrateniente analfabeta. A los tres años fue entregado a su abuela mientras su madre se casaba de nuevo y fundaba otra familia. Rechazado por su madre, odiando a su padrastro y pasando por una infancia infeliz y conflictiva, no había nada, como suele decirse, que indicara que el pequeño Isaac albergaba un genio capaz de hacer la luz sobre las leyes del universo.

La vuelta de su madre al morir su segundo marido en 1653 hizo volver al todavía niño Isaac de la escuela para encargarse de las tierras familiares, pero fue todo un fracaso como agricultor y volvió al colegio, con objeto de prepararse para entrar a Cambridge. Alumno brillante pero sin alardes demasiado destacados, y siempre con problemas emocionales, terminó su educación a los 18 años y a los 19 marchó a Cambridge, dejando atrás a la única novia que se le conocería. La venerable institución a la que llegó el joven y atormentado estudiante estaba por entonces dominada aún por las tradiciones escolásticas y la reverencia a Aristóteles, que no apasionaban a Newton. En examen en 1664 sobre la geometría de Euclides mostró graves lagunas, al mismo tiempo que estudiaba vigorosamente por su cuenta a pensadores menos tradicionales como Descartes (cuyas matemáticas le absorbían) y Hobbes, y a astrónomos revolucionarios y “peligrosos” como Galileo, Copérnico y Kepler. Estos serían los personajes a los que Newton se referiría cuando dijo en 1675: “Si he visto más lejos que otros, ha sido por estar de pie sobre hombros de gigantes”.

Graduado sin honores ni distinciones especiales en 1665, Newton volvió a su pueblo cuando Cambridge cerró sus puertas a causa de la peste, para abrirlas de nuevo hasta 1667. El joven se dedicó a estudios que se convertirían en asombrosas aportaciones para la ciencia. En sólo dieciocho meses (anticipando en cierta medida el “anno mirabilis” o “año de las maravillas de Einstein”, que en 1905 publicó cuatro artículos que cambiaron el mundo), Isaac Newton descubrió las ley del inverso del cuadrado, desarrolló el cálculo infinitesimal, generalizó el teorema del binomio, estableció las bases de su teoría de la luz y el color y avanzó de modo significativo en su comprensión del movimiento de los planetas que devendría en las leyes de la gravitación. Al término de este período, el personaje que volvió a Cambridge cuando la universidad reabrió sus puertas era otro, quizá con más claridad en sus intereses, que consiguió una beca menor, finalizó su maestría un año después y en 1669, a los 26 años de edad, obtuvo la cátedra lucasiana de matemáticas (hoy ocupada por Stephen Hawking), que representaba la tranquilidad profesional y económica, y una avenida para dedicar gran cantidad de tiempo a pensar, descubrir y crear. Newton envía entonces al editor su obra sobre cálculo de ecuaciones con números infinitos, que abriría el camino para el cálculo diferencial e integral, base de las matemáticas actuales.

De 1670 a 1672 se ocupa principalmente de la luz, demostrando que la luz blanca está compuesta por todos los colores del espectro, y desarrolla la teoría del color que demostró que el color es una propiedad de la luz y no de los objetos que la reflejan, además de inventar el telescopio de reflexión, el más común telescopio óptico desde entonces. En 1675 publica su Hipótesis sobre la luz, a contracorriente de sus contemporáneos que sostenían otras ideas y atacaron con bastante violencia a Newton. Autor de la frase “el tacto es la capacidad de hacer una afirmación sin hacerse de un enemigo”, Newton no gustaba de enfrentamientos y publicaba sin mucha convicción, por lo cual usó la reacción contra su obra como motivo para no publicar más sus obras mayores, compromiso que sostuvo hasta 1687. Esto significó que la difusión de su obra se daría en comunicaciones privadas con otros estudiosos. En 1676 le comunicó a Henry Oldenburg por carta el teorema del binomio que había desarrollado 10 años atrás, estableciendo por ello correspondencia con el matemático alemán Leibnitz. Varios astrónomos revolucionarios como Edmond Halley conocieron los méritos de Newton en el conocimiento de los movimientos de los cuerpos celestes, y fue este último el que se esforzó por conseguir que Newton aceptara publicar su libro Philosophiae naturalis principia mathematica, mejor conocido como los Principia con los que estableció los nuevos cimientos de las matemáticas y la física.

En 1689, dos años después de la publicación de esta obra esencial, Newton obtuvo un escaño como miembro del Parlamento, en el que, dice la leyenda, su única intervención fue para pedir que abrieran una ventana, y se ocupó de la química, la hidrodinámica y la construcción de telescopios, además de disciplinas menos precisas como la alquimia, el ocultismo y los estudios literalistas bíblicos, y finalmente abandonó Cambridge para aceptar el puesto de director de la casa de moneda, fue hecho caballero por la reina Ana y después de una larga enfermedad murió en 1727, a los 85 años de edad.

Los últimos años de la vida del genio británico se vieron ocupados por la renovación del sistema monetario británico, una excentricidad cada vez mayor y una feroz controversia con Leibnitz sobre la paternidad genuina del cálculo diferencial e integral, un enfrentamiento amargo que no terminó siquiera con la muerte de los matemáticos, pues seguía presente a fines del siglo XVIII, recordándonos que esos hombres de pensamiento genial y visión amplísima sobre el universo no dejan, por ello, de ser humanos, con las mismas pasiones y penurias que cualquiera de nosotros.

Hoy en día, los historiadores de la ciencia aceptan que Leibnitz y Newton muy probablemente desarrollaron el concepto independientemente.

El síndrome de Asperger

Investigadores de las universidades de Cambridge y Oxford concluyeron en 2003 que, probablemente, los dos máximos genios conocidos, Isaac Newton y Albert Einstein, sufrieron una forma de síndrome de Asperger, una de las formas del autismo, caracterizada por una falta de habilidades sociales, obsesión con temas complejos y problemas de comunicación. Se sabe que Newton casi no hablaba, se obsesionaba tanto con el trabajo que solía olvidarse de comer y era tibio o incluso desagradable con sus pocos amigos. Si bien esto no vuelve genios a todos los pacientes de Asperger, sí les da esperanzas de encontrar su lugar bajo el sol.

Rarezas y sorpresas en el cielo

Uno de los primeros anuncios científicos de este año estuvo a cargo, de nuevo, de observaciones realizadas por el telescopio espacial Hubble. La astrónoma Duilia de Mello anunció que con el Hubble se habían descubierto inesperadas “burbujas azules”, cada una con un peso de decenas de miles de veces la masa de nuestro Sol, en el punto donde tres galaxias chocaron hace unos 200 millones de años. Acercándose, el Hubble vio que eran grupos de hasta 20.000 estrellas cada uno, y algunas de sólo 10 millones de años (nuestro Sol, por comparación, tiene una antigüedad de 4.600 millones de años). Hasta este momento, los astrónomos consideraban que el gas en los bordes de la galaxia no era lo suficientemente concentrado como para disparar la creación de estrellas, además de poder haber jugado un papel relevante en los primeros tiempos de nuestro universo. Es la última (hasta hoy) rareza que nos ofrece el universo en el que vivimos.

Al mirar al cielo, los que tenemos poca experiencia en la observación de cuanto ocurre sobre nuestras cabezas podemos extrañarnos –e incluso alarmarnos- al ver ciertos fenómenos que son, sin embargo, totalmente naturales. En su día, incluso cuando ya se podían predecir, los eclipses de sol y de luna eran dotados de significados mágicos, sobrenaturales y con frecuencia temibles, y más grave era la situación de los cometas, cuya aparición no es fácilmente predecible (salvo los casos excepcionales de cometas de apariciones periódicas en relativamente poco tiempo, como el Halley, que vuelve a pasar cerca del sol cada 75-76 años). En prácticamente todas las civilizaciones los cometas eran augurio de calamidades diversas.

No fue sino hasta que se inventó el telescopio y se desarrolló la comprensión del universo a partir de las ideas de Nicolás Copérnico que empezamos a entender genuinamente algunos aspectos del espacio que nos rodea, y con ello empezamos a encontrarnos con objetos que fueron, todos, rarezas en su momento. Las manchas del sol y las lunas de Júpiter, dos descubrimientos de Galileo, simplemente cambiaron de golpe y para siempre la idea del cosmos como un lugar que reflejara uno u otro esquema mitológico o religioso. Ideas falsas pero atractivas como la de la “música de los astros” y la relación geométrica entre las órbitas de los planetas quedaron atrás rápidamente. Entendimos que otros planetas pueden tener satélites, que nuestro sol es una estrella y que otras estrellas pueden tener planetas, que las estrellas se agrupan en galaxias de distintas formas y características y, sobre todo, vimos los enormes alcances de nuestra ignorancia, lo mucho que nos quedaba por saber sobre nuestro universo. Para seguir conociéndolo, a los telescopios de luz visible se añadieron otras herramientas como los radiotelescopios, los telescopios de infrarrojos y de microondas, los telescopios que huían de las distorsiones causadas por nuestra atmósfera para hacer observaciones más precisas desde una órbita alrededor de la Tierra.

Con todas estas herramientas la humanidad ha confirmado la visionaria afirmación realizada en 1927 por el brillante genetista y biólogo evolutivo J.B.S. Haldane: “No tengo dudas de que en realidad el futuro será muchísimo más sorprendente que cualquier cosa que yo pueda imaginar. Ahora, mi propia sospecha es que el universo no es sólo más extraño de lo que suponemos, sino que es más extraño de lo que podemos suponer”, y lo ha hecho encontrando asombrosas rarezas en el universo, objetos enormes, reales y que nos permiten hacernos muchas nuevas preguntas.

En 1950, se empezaron a descubrir fuentes de radio que no tenían un objeto visible correspondiente. Pero no fue sino hasta 1962 que se encontró la primera contraparte visible de estos extraños objetos, bautizados en 1964 como “cuásares”, objetos cuasi estelares. Siguió a esto la búsqueda de una explicación a su enorme potencia pese a su enorme lejanía cósmica, lo qeu se logró en 1970, y en 1979 se demostró mediante observación que las emisiones de los cuásares sufrían el efecto de “lente gravitacional” predicho por la relatividad einsteiniana. Hoy, hay consenso en considerar, salvo nuevos datos, que los cuásares son los discos de acreción o acumulación de materia que existen alrededor de los agujeros negros supermasivos presentes, al parecer, en todas las galaxias, o en la mayoría de ellas.

En 1967, en un observatorio británico, Jocelyn Bell y Antony Hewish detectaron en los rastros de datos del radiotelescopio una señal de radio que era perfectamente regular en su duración, el ciclo de su repetición y su procedencia. La primera idea que tuvieron fue que se trataba de ruido aleatorio, pero pronto vieron que no podía serlo y propusieron como otra explicación que la señal podría ser un radiofaro o una comunicación de una civilización extraterrestre, de modo que llamaron al emisor de la señal LGM-1, donde LGM son las siglas de Little Green Men, pequeños hombres verdes, tomándose un poco a chanza la posibilidad que ellos mismos sugerían. Pronto se determinó, sin embargo, que era otra cosa. Los astrónomos Thomas Gold y Fred Hoyle sugirieron que se trataba de una "estrella de neutrones" que giraba rápidamente. La idea de una estrella formada principalmente por neutrones, como resultado de la explosión de una estrella masiva en el cataclismo estelar que conocemos como supernova, había aparecido apenas en 1934. Los estudios demostraron, finalmente, que LGM-1 era efectivamente una estrella neutrónica girando rápidamente (una vez cada 1,377 segundos) y su movimiento era el responsable de la señal pulsante, por lo que se dio el nombre de pulsares a este tipo de estrellas que hoy sabemos que son la mayoría de las estrellas neutrónicas.

Y podemos estar muy seguros de que, al paso del tiempo, encontraremos rarezas que dejarán atrás los sueños de la ciencia ficción, en un universo extraño pero fascinante.

Una idea convertida en realidad

El objeto estelar más extraño es el agujero negro. La probabilidad de su existencia se propuso por primera vez en 1783, pero hasta que tuvimos los conocimientos de la gravedad relativista se pudo dar un debate y estudios por los más relevantes físicos del siglo XX para determinar si podía o no haber agujeros negros, y cómo se comportarían. Lo que era sólo la hipótesis de un objeto tremendamente extraño, tan masivo y denso que ni la luz podía escapar de él, se fue perfilando como algo que debía existir en nuestro universo y algo que casi con certeza exista. Hoy, aunque no es posible detectar directamente un agujero negro, tenemos evidencias suficientes para considerar que hay uno en el centro de las galaxias más grandes... incluida la nuestra.