The Realization of a Three-Dimensional Temperature Measurement System with a Two-Dimensional Sensor Array and the Demonstration of the Deformation Effect of Gravity on the Heating Patterns
Abstract
:1. Introduction
- The three-dimensional heating pattern of the fan heater was extracted using 64 temperature sensors arranged in an 8 × 8 layout in the xz-plane;
- The deformation effect of gravity on the three-dimensional heating pattern was demonstrated;
- A three-dimensional model of the maximum temperature point was developed based on the fan voltage and distance between the heater and the sensor. The obtained model was compared with the measurement results to demonstrate its accuracy;
- The effect of gravity on the maximum temperature point shifting towards the +z axis was analyzed based on the fan speed and heater–sensor distance.
2. Materials and Methods
2.1. Temperature Measurement Circuit
2.2. Temperature Measurement System
3. Experimental Setup
Temperature Measurement Steps
- Step 1.
- The heater–sensor array distance (dhs) (0–100 cm) was set.
- Step 2.
- A fan voltage (16–20 V) was applied.
- Step 3.
- The resistance of the fan heater was energized with a grid voltage (220 VAC).
- Step 4.
- The fan heater was heated for 30 s.
- Step 5.
- Each of the 64 sensors was sampled for 20 s at a sampling frequency of 100 Hz with a 10-bit resolution, and the measurement results were stored.
- Step 6.
- The 2000 temperature measurements for each sensor were averaged and stored.
4. Results and Discussions
4.1. Three-Dimensional Heating Patterns
4.2. Maximum Temperature Curves
4.3. The Shift of the Maximum Temperature Point
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Othman, M.I.; Said, S.; Marın, M. A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 4788–4806. [Google Scholar] [CrossRef]
- Jain, M.K.; Grimes, C.A. A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure. IEEE Trans. Magn. 2021, 37, 2022–2024. [Google Scholar] [CrossRef]
- Schaufelbuhl, A.; Schneeberger, N.; Munch, U.; Waelti, M.; Paul, O.; Brand, O.; Baltes, H.; Menolfi, C.; Huang, Q.; Doering, E.; et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array. J. Microelectromechanical Syst. 2001, 10, 503–510. [Google Scholar] [CrossRef]
- Nguyen, N.T. A novel measurement concept for wind speed and wind direction based on a temperature sensor array. In Proceedings of the 41st SICE Annual Conference, Osaka, Japan, 5–7 August 2002. [Google Scholar] [CrossRef]
- Nguyen, N.-T. A novel thermal sensor concept for flow direction and flow velocity. IEEE Sens. J. 2005, 5, 1224–1234. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Markelov, V.A.; Novikov, M.A.; Ustavshikov, S.S.; Volkov, P.V.; Kwon, I.B. Multichannel temperature sensing by differential coherence multiplexing. IEEE Sens. J. 2006, 6, 982–985. [Google Scholar] [CrossRef]
- Tao, J.; Du, P. Application on seepage monitoring by multi-point optical fiber grating temperature measurement system. In Proceedings of the Second International Symposium on Information Science and Engineering, Shanghai, China, 26–28 December 2009. [Google Scholar] [CrossRef]
- Luria, K.; Shor, J. Miniaturized CMOS thermal sensor array for temperature gradient measurement in microprocessors. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 3–6 May 2010. [Google Scholar] [CrossRef]
- Pfrimer, F.; Koyama, M.; Dante, A.; Ferreira, E.; Dias, J. A closed-loop interrogation technique for multi-point temperature measurement using fiber bragg gratings. J. Light. Technol. 2014, 32, 971–977. [Google Scholar] [CrossRef]
- Ge, Q.; Wen, C.; Duan, S. Fire localization based on range-range-range model for limited interior space. IEEE Trans. Instrum. Meas. 2014, 63, 2223–2237. [Google Scholar] [CrossRef]
- Zacepins, A.; Meitalovs, J. Implementation of multi-node temperature measurement system for bee colonies online monitoring. In Proceedings of the 2014 15th International Carpathian Control Conference, Velke Karlovice, Czech Republic, 28–30 May 2014. [Google Scholar] [CrossRef]
- Oiler, J.; Shock, E.; Hartnett, H.; Dombard, A.J.; Yu, H. Harsh environment sensor array-enabled hot spring mapping. IEEE Sens. J. 2014, 14, 3418–3425. [Google Scholar] [CrossRef]
- Zbieć, M.; Obrębski, D. The multi-point pressure and temperature measurement system for aerodynamic tunnel. In Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems, Lublin, Poland, 19–21 June 2014; pp. 482–485. [Google Scholar] [CrossRef]
- Hariharan, P.; Dibaji, S.A.R.; Banerjee, R.K.; Nagaraja, S.; Myers, M.R. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Bouderbala, K.; Nouira, H.; Girault, M.; Videcoq, E.; Salgado, J.A. Effects of thermal drifts on the calibration of capacitive displacement probes at the nanometer level of accuracy. IEEE Trans. Instrum. Meas. 2015, 64, 3062–3074. [Google Scholar] [CrossRef]
- Bazzo, J.P.; Mezzadri, F.; Silva, E.V.; Pipa, D.R.; Martelli, C.; Cardozo da Silva, J.C. Thermal imaging of hydroelectric generator stator using a dts system. IEEE Sens. J. 2015, 15, 6689–6696. [Google Scholar] [CrossRef]
- Billard, M.W.; Basantani, H.A.; Horn, M.W.; Gluckman, B.J. A flexible vanadium oxide thermistor array for localized temperature field measurements in brain. IEEE Sens. J. 2016, 16, 2211–2212. [Google Scholar] [CrossRef]
- Chi, T.; Park, J.S.; Butts, J.C.; Hookway, T.A.; Su, A.; Zhu, C.; Styczynski, M.P.; McDevitt, T.C.; Wang, H. A multi-modality cmos sensor array for cell-based assay and drug screening. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Reigosa, D.D.; Fernandez, D.; Tanimoto, T.; Kato, T.; Briz, F. Permanent-magnet temperature distribution estimation in permanent-magnet synchronous machines using back electromotive force harmonics. IEEE Trans. Ind. Appl. 2016, 52, 3093–3103. [Google Scholar] [CrossRef]
- Morana, A.; Mellier, F.; Cheymol, G.; Destouches, C.; Salvo, J.D.; Girard, S.; Laffont, G.; Marin, E. Irradiation campaign in the eole critical facility of fiber optic bragg gratings dedicated to the online temperature measurement in zero power research reactors. IEEE Trans. Nucl. Sci. 2016, 63, 2887–2894. [Google Scholar] [CrossRef]
- Russell, L.; Goubran, R.; Kwamena, F. Posture detection using sounds and temperature lms-based approach to enable sensory substitution. IEEE Trans. Instrum. Meas. 2018, 67, 1543–1554. [Google Scholar] [CrossRef]
- Lindner, M.; Tunc, E.; Weraneck, K.; Heilmeier, F.; Volk, W.; Jakobi, M.; Koch, A.W.; Roths, J. Regenerated bragg grating sensor array for temperature measurements during an aluminum casting process. IEEE Sens. J. 2018, 18, 5352–5360. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, Q.; Ai, F.; Luo, Y.; Zhang, W.; Li, X.; Liu, D. High-speed and high-resolution demodulation system for the hybrid wdm/fdm based fiber microstructure sensing network. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Aranzabal, N.; Martos, J.; Steger, H.; Blum, P.; Soret, J. Novel Instrument for Temperature Measurements in Borehole Heat Exchangers. IEEE Trans. Instrum. Meas. 2019, 68, 1062–1070. [Google Scholar] [CrossRef]
- Escribano, M.M.; Solano, M.G.; Laita, I.P.; Alvarez, J.M.; Marroyo, L.; Pigueiras, E.L. Module temperature dispersion within a large PV array observations at the Amareleja PV plant. IEEE J. Photovolt. 2018, 8, 1725–1731. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Du, Y.; Zheng, J.; Deng, Z. Dynamic liquid nitrogen level detection of cryostats onboard the hts maglev vehicle. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Panpan, Z.; Bifeng, Y.; Yi, Z.; Shangchang, M. A multi-channel temperature measurement and fusion system based on Cortex-M4. In Proceedings of the 2019 International Conference on Meteorology Observations, Chengdu, China, 28–31 December 2019. [Google Scholar] [CrossRef]
- Géczy, A.; Péter, Z.; Illyefalvi-Vitéz, Z. 3D thermal profiling of an experimental vapour phase soldering station. In Proceedings of the 2011 34th International Spring Seminar on Electronics Technology, Tratanska Lomnica, Slovakia, 11–15 May 2011. [Google Scholar] [CrossRef]
- Jakovenko, J.; Werkhoven, R.; Formánek, J.; Kunen, J.; Bolt, P.; Kulha, P. Thermal simulation and validation of 8W LED Lamp. In Proceedings of the 2011 12th International Conference on Thermal Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Linz, Austria, 18–20 April 2011. [Google Scholar] [CrossRef]
- Liu, X.; Hao, X.; Xue, B.; Tai, B.; Zhou, H. Two-dimensional flame temperature and emissivity distribution measurement based on element doping and energy spectrum analysis. IEEE Access 2020, 8, 200863–200874. [Google Scholar] [CrossRef]
- Gaspar, G.; Dudak, J.; Mikolajcikova, M.; Gurin, D. Proposal of a skin temperature measurement system based on digital thermometers. IEEE Access 2023, 11, 25050–25062. [Google Scholar] [CrossRef]
- Vincent, T.A.; Gulsoy, B.; Sansom, J.E.H.; Marco, J. A smart cell monitoring system based on power line communication-optimization of instrumentation and acquisition for smart battery management. IEEE Access 2021, 9, 161773–161793. [Google Scholar] [CrossRef]
- Beheshti, A.; Meysam, F.I.; Meghnefı, F. Review of various sensor technologies in monitoring the condition of power transformers. Energies 2024, 17, 3533. [Google Scholar] [CrossRef]
- Kuzubasoglu, B.A.; Bahadır, S.K. Flexible temperature sensors: A review. Sens. Actuators A Phys. 2020, 315, 112282. [Google Scholar] [CrossRef]
- Budelmann, C. Opto-electronic sensor network powered over fiber for harsh industrial applications. IEEE Trans. Ind. Electron. 2018, 65, 1170–1177. [Google Scholar] [CrossRef]
- Carigiet, F.; Brabec, C.J.; Baumgartner, F.P. Long-term power degradation analysis of crystalline silicon PV modules using indoor and outdoor measurement techniques. Renew. Sustain. Energy Rev. 2021, 144, 111005. [Google Scholar] [CrossRef]
- Yang, G.; Wen, Y. A controllable DCCS-based PT temperature sensor in high precision molecular spectroscopy application. IEEE Access 2020, 8, 42519–42528. [Google Scholar] [CrossRef]
- Jin, G.; Xie, X.; Li, P.; Li, H.; Zhao, M.; Zou, M. Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank. Energies 2024, 17, 3246. [Google Scholar] [CrossRef]
- Reverter, F. Two Proposals of a Simple Analog Conditioning Circuit for Remote Resistive Sensors with a Three-Wire Connection. Sensors 2024, 24, 422. [Google Scholar] [CrossRef]
- Huo, D.; Hou, D.; Zhang, S.; Gao, W.; Yu, C.; Jia, L.; Chang, B.; Zhang, R.; Guo, M. Study of Pavement Performance and Temperature Regulation Capacity of Asphalt Binders Modified with Dual-Phase-Change Materials. Buildings 2023, 13, 2702. [Google Scholar] [CrossRef]
- Han, Y.; Deng, X.; Zheng, J.; Lin, X.; Wang, X.; Chen, Y. Thermal Error Prediction for Vertical Machining Centers Using Decision-Level Fusion of Multi-Source Heterogeneous Information. Machines 2024, 12, 509. [Google Scholar] [CrossRef]
- Ai, L.; Lu, Y.; Han, J.; Suo, W. Simulation of the Temperature of a Shielding Induction Motor of the Nuclear Main Pump under Different Turbulence Models. Energies 2023, 16, 2792. [Google Scholar] [CrossRef]
- Platinum-Chip Temperature Sensors with Connection Wires According to DIN EN 60751:2009 IEC 60751:2008; JUMO Instrument Co. Ltd.: Fulda, Germany, 2002; pp. 1–25.
- PT100 Resistance Table; Thermocouple Instruments Ltd.: Caerphilly, UK, 1999; pp. 1–2.
- Easily Applicable Graphical Layout Editor, version 9.5; Autodesk Inc.: San Francisco, CA, USA, 2019; pp. 1–376.
- Akima, H. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Schreiber, J.F.; Sausen, A.; Campos, M.; Sausen, P.S.; Silva, M.T.; Filho, F. Data imputation techniques applied to the smart grids environment. IEEE Access 2023, 11, 31931–31940. [Google Scholar] [CrossRef]
S2 | S1 | S0 | Command |
---|---|---|---|
1 | 1 | 1 | Start sampling |
0 | 0 | 1 | Send sampled data: LCU1 |
0 | 1 | 0 | Send sampled data: LCU2 |
0 | 1 | 1 | Send sampled data: LCU3 |
dhs (cm) | Fan Voltage (V) | ||||
---|---|---|---|---|---|
16 | 17 | 18 | 19 | 20 | |
0 | |||||
20 | |||||
40 | |||||
60 | |||||
80 | |||||
100 |
Coeff. | Value | Coeff. | Value | Coeff. | Value |
---|---|---|---|---|---|
c1 | 173.8 | c4 | 6.950 × 10−2 | c7 | −5.071 × 10−4 |
c2 | −4.868 | c5 | 8.146 × 10−2 | c8 | 1.771 × 10−6 |
c3 | −3.265 | c6 | −5.255 × 10−4 | c9 | −5.523 × 10−8 |
Fan Voltage [V] | RMSE [°C] | RSQ |
---|---|---|
16 | 2.6935 | 0.9917 |
17 | 1.4414 | 0.9971 |
18 | 2.1745 | 0.9923 |
19 | 1.7418 | 0.9950 |
20 | 1.4149 | 0.9964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samuk, D.C.; Cakir, O. The Realization of a Three-Dimensional Temperature Measurement System with a Two-Dimensional Sensor Array and the Demonstration of the Deformation Effect of Gravity on the Heating Patterns. Sensors 2025, 25, 198. https://doi.org/10.3390/s25010198
Samuk DC, Cakir O. The Realization of a Three-Dimensional Temperature Measurement System with a Two-Dimensional Sensor Array and the Demonstration of the Deformation Effect of Gravity on the Heating Patterns. Sensors. 2025; 25(1):198. https://doi.org/10.3390/s25010198
Chicago/Turabian StyleSamuk, Dogan Can, and Oguzhan Cakir. 2025. "The Realization of a Three-Dimensional Temperature Measurement System with a Two-Dimensional Sensor Array and the Demonstration of the Deformation Effect of Gravity on the Heating Patterns" Sensors 25, no. 1: 198. https://doi.org/10.3390/s25010198
APA StyleSamuk, D. C., & Cakir, O. (2025). The Realization of a Three-Dimensional Temperature Measurement System with a Two-Dimensional Sensor Array and the Demonstration of the Deformation Effect of Gravity on the Heating Patterns. Sensors, 25(1), 198. https://doi.org/10.3390/s25010198