A Third Angular Momentum of Photons
Abstract
:Main Text
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Matsuda, T.; Bonevich, J.; Igarashi, M.; Kondo, S.; Pozzi, G.; Kawabe, U.; Tonomura, A. Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 1992, 360, 51–53. [Google Scholar] [CrossRef]
- Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F.H.; Hasenfuß, G.; Gilmour, R.F.; et al. Electromechanical vortex filaments during cardiac fibrillation. Nature 2018, 555, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Dorrah, A.H.; Rubin, N.A.; Tamagnone, M.; Zaidi, A.; Capasso, F. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics. Nat. Commun. 2021, 12, 6249. [Google Scholar] [CrossRef]
- Aiello, A.; Banzer, P.; Neugebauer, M.; Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 2015, 9, 789–795. [Google Scholar] [CrossRef]
- Berry, M.V.; Dennis, M.R. Topological events on wave dislocation lines: Birth and death of loops, and reconnection. J. Phys. A Math. Theor. 2006, 40, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A. Modern tools for classical and quantum communication with vector vortex beams. In Proceedings of the 2018 23rd Opto-Electronics and Communications Conference (OECC), Jeju, Republic of Korea, 2–6 July 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Rego, L.; Dorney, K.M.; Brooks, N.J.; Nguyen, Q.L.; Liao, C.-T.; Román, J.S.; Couch, D.E.; Liu, A.; Pisanty, E.; Lewenstein, M.; et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 2019, 364, eaaw9486. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, V.; Carvacho, G.; Graffitti, F.; Vitelli, C.; Piccirillo, B.; Marrucci, L.; Sciarrino, F. Entangled vector vortex beams. Phys. Rev. A 2016, 94, 030304. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.J.; Dennis, M.R. Vortex knots in tangled quantum eigenfunctions. Nat. Commun. 2016, 7, 12346. [Google Scholar] [CrossRef]
- Lim, S.W.D.; Park, J.-S.; Meretska, M.L.; Dorrah, A.H.; Capasso, F. Engineering phase and polarization singularity sheets. Nat. Commun. 2021, 12, 4190. [Google Scholar] [CrossRef]
- Taira, Y.; Zhang, S. Split in phase singularities of an optical vortex by off-axis diffraction through a simple circular aperture. Opt. Lett. 2017, 42, 1373–1376. [Google Scholar] [CrossRef] [PubMed]
- Ruchi; Senthilkumaran, P.; Pal, S.K. Phase Singularities to Polarization Singularities. Int. J. Opt. 2020, 2020, 1–33. [Google Scholar] [CrossRef]
- Albini, F.A.; Jahn, R.G. Reflection and Transmission of Electromagnetic Waves at Electron Density Gradients. J. Appl. Phys. 1961, 32, 75–82. [Google Scholar] [CrossRef]
- Dutreix, C.; Bellec, M.; Delplace, P.; Mortessagne, F. Wavefront dislocations reveal the topology of quasi-1D photonic insulators. Nat. Commun. 2021, 12, 3571. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.; Dennis, M.R.; Courtial, J.; Padgett, M.J. Knotted threads of darkness. Nature 2004, 432, 165. [Google Scholar] [CrossRef] [Green Version]
- Berry, M. Making waves in physics: Three wave singularities from the miraculous 1830s. Nature 2000, 403, 21. [Google Scholar] [CrossRef]
- O’Holleran, K.; Padgett, M.; Dennis, M.R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express 2006, 14, 3039–3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolov, S. Quantum computing’s reproducibility crisis: Majorana fermions. Nature 2021, 592, 350–352. [Google Scholar] [CrossRef]
- Mosseri, R.; Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 2001, 34, 10243–10252. [Google Scholar] [CrossRef]
- Wie, C.-R. Two-Qubit Bloch Sphere. Physics 2020, 2, 383–396. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.; Oladipo, A.O.; Panoiu, N.C.; Ye, F. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires. Sci. Rep. 2015, 5, 13089. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, Y.; Liu, Y.; Qu, S. On-Chip Optical Vortex Generation and Topological Charge Control by Methods of Wave Vector Manipulation. IEEE Photonics J. 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Nye, J.F. Polarization effects in the diffraction of electromagnetic waves: The role of disclinations. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1983, 387, 105–132. [Google Scholar] [CrossRef]
- Lim, T.T.; Nickels, T.B. Instability and reconnection in the head-on collision of two vortex rings. Nature 1992, 357, 225–227. [Google Scholar] [CrossRef]
- Kragh, H. The Vortex Atom: A Victorian Theory of Everything. Centaurus 2002, 44, 32–114. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, S.; Guo, W. Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence. Proc. Natl. Acad. Sci. USA 2021, 118, e2021957118. [Google Scholar] [CrossRef]
- Froeyen, M.; Abu el Asrar, R.; Abramov, M.; Herdewijn, P. Molecular simulation of cyclohexanyl nucleic acid (CNA) duplexes with CNA, DNA and RNA and CNA triloop and tetraloop hairpin structures. Bioorganic Med. Chem. 2016, 24, 1778–1785. [Google Scholar] [CrossRef]
- Oldenbourg, R.; Salmon, E.; Tran, P. Birefringence of Single and Bundled Microtubules. Biophys. J. 1998, 74, 645–654. [Google Scholar] [CrossRef]
- Ghosh, S.; Dutta, M.; Ray, K.; Fujita, D.; Bandyopadhyay, A. A simultaneous one pot synthesis of two fractal structures via swapping two fractal reaction kinetic states. Phys. Chem. Chem. Phys. 2016, 18, 14772–14775. [Google Scholar] [CrossRef]
- Xu, L.; Li, D.; Chang, J.; Li, D.; Xi, T.; Hao, Z. Powerful supercontinuum vortices generated by femtosecond vortex beams with thin plates. Photonics Res. 2022, 10, 802–809. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, S.; Guo, X.; Li, P.; Wei, B.; Han, L.; Qi, S.; Zhao, J. Observation of optical vortex knots and links associated with topological charge. Opt. Express 2021, 29, 38849. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Tasgin, M.E.; Müstecaplıoğlu, E. Collectively induced many-vortices topology via rotatory Dicke quantum phase transition. New J. Phys. 2016, 18, 093022. [Google Scholar] [CrossRef]
- Ghosh, S.; Fujita, D.; Bandyopadhyay, A. An organic jelly made fractal logic gate with an infinite truth table. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, K.; Singh, P.; Sarkar, J.; Sahoo, P.; Ghosh, S.; Krishnananda, S.D.; Bandyopadhyay, A. Polyatomic time crystals of the brain neuron extracted microtubule are projected like a hologram meters away. J. Appl. Phys. 2022, 132, 194401. [Google Scholar] [CrossRef]
- Singh, P.; Saxena, K.; Singhania, A.; Sahoo, P.; Ghosh, S.; Chhajed, R.; Ray, K.; Fujita, D.; Bandyopadhyay, A. A Self-Operating Time Crystal Model of the Human Brain: Can We Replace Entire Brain Hardware with a 3D Fractal Architecture of Clocks Alone? Information 2020, 11, 238. [Google Scholar] [CrossRef]
- Karnieli, A.; Arie, A. Fully controllable adiabatic geometric phase in nonlinear optics. Opt. Express 2018, 26, 4920–4932. [Google Scholar] [CrossRef]
- Slussarenko, S.; Alberucci, A.; Jisha, C.; Piccirillo, B.; Santamato, E.; Assanto, G.; Marrucci, L. Guiding light via geometric phases. Nat. Photonics 2016, 10, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, C.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011, 5, 81–101. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhattacharya, K.; Sarkar, S.K. Quantitative birefringence microscopy with collinearly propagating orthogonally polarized beams. Appl. Opt. 2018, 57, 1934–1939. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, J.; Jack, B.; Romero, J.; Jha, A.K.; Yao, A.M.; Franke-Arnold, S.; Ireland, D.G.; Boyd, R.W.; Barnett, S.M.; Padgett, M.J. Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables. Science 2010, 329, 662–665. [Google Scholar] [CrossRef]
- Terech, P.; Ostuni, E.; Weiss, R.G. Structural Study of Cholesteryl Anthraquinone-2-carboxylate (CAQ) Physical Organogels by Neutron and X-ray Small Angle Scattering. J. Phys. Chem. 1996, 100, 3759–3766. [Google Scholar] [CrossRef]
- Basak, S.; Nanda, J.; Banerjee, A. A New Aromatic Amino Acid Based Organogel for Oil Spill Recovery. J. Mater. Chem. 2012, 22, 11658–11664. [Google Scholar] [CrossRef]
- Nagao, Y.; Yagi, M.; Ikede, T.; Fujita, E. A New Chiral Recognition in Aminolysis of 3-Acyl-4(R)-methoxycarbonyl-1,3-thiazolidine-2-thione with Racemic Amines. Tetrahedron Lett. 1982, 23, 201–204. [Google Scholar] [CrossRef]
- Ongaratto, R.; Conte, N.; D’Oca, C.R.M.; Brinkerhoff, R.C.; Ruas, C.P.; Gelesky, M.A.; D’Oca, M.G.M. In Situ Formation of AuNPs using Fatty N-Acylamino Hydrazide Organogelators as Templates. New J. Chem. 2019, 43, 295–303. [Google Scholar] [CrossRef]
- Pal, A.; Ghosh, Y.K.; Bhattacharya, S. Molecular Mechanism of Physical Gelation of Hydrocarbons by Fatty Acid Amides of Natural Amino Acids. Tetrahedron 2007, 63, 7334–7348. [Google Scholar] [CrossRef]
- Thalhammer, A.; Mecinović, J.; Schofield, C.J. Triflic Anhydride-mediated Synthesis of Oxazoles. Tetrahedron Lett. 2009, 50, 1045–1047. [Google Scholar] [CrossRef]
- Ordóñez, M.; Hernández-Fernández, E.; Montiel-Pérez, M.; Bautista, R.; Bustos, P.; Rojas-Cabrera, H.; Fernández-Zertuche, M.; García-Barradas, O. A Convenient Method for the Preparation of Chiral Phosphonoacetamides and their Horner-Wadsworth-Emmons Reaction. Tetrahedron Asymmetry 2007, 18, 2427–2436. [Google Scholar] [CrossRef]
- Bender, M. The use of light scattering to determine particle size and molecular weight and shape. J. Chem. Educ. 1952, 29, 15–23. [Google Scholar] [CrossRef]
- Ye, Y.; Pui, D.Y.H. Detection of nanoparticles suspended in a light scattering medium. Sci. Rep. 2011, 11, 20268. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Taneja, A.; Mohanty, T.; Singh, R.P. Effect of laser beam propagation through the plasmonic nanoparticles suspension. Results Opt. 2021, 3, 100081. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Zhao, M.; Lu, P.X.; Lu, Y.F. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures. Opt. Lett. 2010, 35, 2588–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, M.; Tasco, V.; Cuscunà, M.; Todisco, F.; Benedetti, A.; Tarantini, I.; De Giorgi, M.; Sanvitto, D.; Passaseo, A. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photonics 2015, 2, 105–114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, P.; Singh, P.; Manna, J.; Singh, R.P.; Hill, J.P.; Nakayama, T.; Ghosh, S.; Bandyopadhyay, A. A Third Angular Momentum of Photons. Symmetry 2023, 15, 158. https://doi.org/10.3390/sym15010158
Sahoo P, Singh P, Manna J, Singh RP, Hill JP, Nakayama T, Ghosh S, Bandyopadhyay A. A Third Angular Momentum of Photons. Symmetry. 2023; 15(1):158. https://doi.org/10.3390/sym15010158
Chicago/Turabian StyleSahoo, Pathik, Pushpendra Singh, Jhimli Manna, Ravindra P. Singh, Jonathan P. Hill, Tomonobu Nakayama, Subrata Ghosh, and Anirban Bandyopadhyay. 2023. "A Third Angular Momentum of Photons" Symmetry 15, no. 1: 158. https://doi.org/10.3390/sym15010158
APA StyleSahoo, P., Singh, P., Manna, J., Singh, R. P., Hill, J. P., Nakayama, T., Ghosh, S., & Bandyopadhyay, A. (2023). A Third Angular Momentum of Photons. Symmetry, 15(1), 158. https://doi.org/10.3390/sym15010158