Cognitive Agents Powered by Large Language Models for Agile Software Project Management
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Motivation and Research Gap
1.4. Objectives and Problem Statements
- RQ1: To what extent can cognitive agents, powered by LLMs, effectively simulate Agile roles and processes in a complex software development environment (e.g., SAFe)?
- RQ2: How do variations in key parameters (e.g., model type, number of iterations, agent roles) influence the quality of outcomes, including code artifacts, documentation, and decision-making efficacy?
1.5. Approach and Methodology
1.6. Evaluation Framework
1.7. An Outline of This Study
2. Preliminaries
2.1. Agile Software Development
2.2. Cognitive Agents and Large Language Models
2.3. Multi-Agent Systems
3. CogniSim Framework
3.1. Framework Architecture
3.2. Agent Categorization
3.3. Integration with SAFe
4. Development Platform
4.1. Platform Architecture
4.2. Key Components and Functionalities
4.3. Implementation Details
5. Simulation Breakdown
5.1. Simulation Setup
5.2. Agent Interactions
5.3. Chat History Output
5.4. Output Analysis
5.4.1. Visualization of Results
5.4.2. Log Analysis
5.4.3. Reproducibility
6. Case Study
6.1. Case Study Overview
6.2. Case Study Approach
- Agent dialogue and decisions: All agent-to-agent and agent-to-environment messages are recorded, providing a complete trace of negotiation, planning, and execution activities.
- Performance metrics: We measure task completion times and adherence to project timelines.
6.3. Results and Analysis
6.4. Key Insights and Applications
7. Experiments and Results
7.1. Experimental Design
- Model type (independent variable): GPT-3.5-turbo or GPT-4.
- Number of iterations (independent variable): Variable between runs (e.g., 10, 50) to observe long-term behavior.
- Agent roles (independent variable): Adjusting which roles are included (Product Management, System Architect, Development Team, etc.).
- Temperature and prompt settings (independent variable): Influencing the creativity and precision of agent outputs.
- Performance metrics: Task completion time, backlog reduction rate.
- Quality metrics: Code adherence to standards, clarity of documentation, correctness of architectural decisions.
- Collaboration and communication metrics: Frequency and quality of agent interactions, consistency in decision-making, adaptability to changing requirements.
Agent Parameters for Experimental Variations
7.2. Results and Analysis
- Unique content percentage: A bar chart highlights the proportion of unique content generated in each simulation, reflecting the level of creative and non-redundant output.
- Diversity score: A line graph presents the diversity scores across simulations, emphasizing variations in the breadth and inclusivity of content.
- Completion score and sentiment stability: A combined plot showcases completion rates and sentiment stability trends, illustrating the balance between task execution and emotional consistency.
- Radar chart of average metrics: A radar chart summarizes the overall performance metrics, including unique content percentage, diversity score, completion score, context retention, and sentiment stability, offering an integrated view of agent performance.
7.3. Quality Measures and Performance Metrics
7.4. Key Findings and Implications
8. Future Work
8.1. Research Extensions
8.2. Technological Advancements
8.3. Security and Privacy Considerations
8.4. Integrating Cognitive Agents into the Enterprise-Wide Agile Scaling Framework
9. Conclusions and Summary
9.1. Summary of Contributions
9.2. Implications for Practice
9.3. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile Software Development Methods: Review and Analysis. arXiv 2017, arXiv:1709.08439. [Google Scholar]
- Perkusich, M.; Chaves E Silva, L.; Costa, A.; Ramos, F.; Saraiva, R.; Freire, A.; Dilorenzo, E.; Dantas, E.; Santos, D.; Gorgônio, K.; et al. Intelligent software engineering in the context of agile software development: A systematic literature review. Inf. Softw. Technol. 2020, 119, 106241. [Google Scholar] [CrossRef]
- Dingsøyr, T.; Nerur, S.; Balijepally, V.; Moe, N.B. A decade of agile methodologies: Towards explaining agile software development. J. Syst. Softw. 2012, 85, 1213–1221. [Google Scholar] [CrossRef]
- Shastri, Y.; Hoda, R.; Amor, R. The role of the project manager in agile software development projects. J. Syst. Softw. 2021, 173, 110871. [Google Scholar] [CrossRef]
- Pressman, R.S.; Maxim, B.R. Software Engineering: A Practitioner’s Approach, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Rubin, K.S.; Cohn, M.; Jeffries, R. Essential Scrum: A Practical Guide to the Most Popular Agile Process; The Addison-Wesley Signature Series; Addison-Wesley: Upper Saddle River, NJ, USA; Boston, MA, USA; Indianapolis, Indiana; San Francisco, CA, USA; New York, NY, USA; Toronto, ON, Canada; Montreal, QC, Canada; London, UK; Munich, Germany; Paris, France; Madrid, Spain; Capetown, South Africa; Sydney, Australia; Tokyo, Japan; Singapore; Mexico City, Mexico, 2013. [Google Scholar]
- Scrum.org. Scrum Framework. Scrum.org. 2020. Available online: https://www.scrum.org (accessed on 24 December 2024).
- Cruz, C.J.X. Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and Language Models in Modern Organizations. arXiv 2024, arXiv:2403.07769. [Google Scholar] [CrossRef]
- Spanoudakis, N.I. Engineering Multi-agent Systems with Statecharts: Theory and Practice. SN Comput. Sci. 2021, 2, 317. [Google Scholar] [CrossRef]
- Guo, Z.; Jin, R.; Liu, C.; Huang, Y.; Shi, D.; Supryadi; Yu, L.; Liu, Y.; Li, J.; Xiong, B.; et al. Evaluating Large Language Models: A Comprehensive Survey. arXiv 2023, arXiv:2310.19736. [Google Scholar]
- Barua, S. Exploring Autonomous Agents through the Lens of Large Language Models: A Review. arXiv 2024, arXiv:2404.04442. [Google Scholar] [CrossRef]
- Dvivedi, S.S.; Vijay, V.; Pujari, S.L.R.; Lodh, S.; Kumar, D. A Comparative Analysis of Large Language Models for Code Documentation Generation. arXiv 2024, arXiv:2312.10349. [Google Scholar] [CrossRef]
- Tian, R.; Ye, Y.; Qin, Y.; Cong, X.; Lin, Y.; Pan, Y.; Wu, Y.; Hui, H.; Liu, W.; Liu, Z.; et al. DebugBench: Evaluating Debugging Capability of Large Language Models. arXiv 2024, arXiv:2401.04621. [Google Scholar] [CrossRef]
- Yuan, S.T.; Yokoo, M.; Goos, G.; Hartmanis, J.; Van Leeuwen, J.; Carbonell, J.G.; Siekmann, J. (Eds.) Intelligent Agents: Specification, Modeling, and Applications: 4th Pacific Rim International Workshop on Multi-Agents, PRIMA 2001 Taipei, Taiwan, 28–29 July 2001 Proceedings; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2132. [Google Scholar] [CrossRef]
- IEEE Foundation for Intelligent Physical Agents (FIPA). Design process documentation template. In Manual SC00097B, IEEE FIPA DPDF Working Group, IEEE FIPA; Status: Standard tex.changelog: (Initial); Cossentino, M., Molesini, A., Omicini, A., Hilaire, V., Fuentes, R., DeLoach, S., Migeon, F., Bonjean, N., Gleizes, M.P., Maurel, C., et al., Eds.; FIPA: Alameda, CA, USA, 2012. [Google Scholar]
- Sumers, T.; Yao, S.; Narasimhan, K.; Griffiths, T.; Cognitive Architectures for Language Agents. Transactions on Machine Learning Research. In Review. 2024. Available online: https://openreview.net/forum?id=1i6ZCvflQJ (accessed on 24 December 2024).
- Cinkusz, K.; Chudziak, J.A. Towards LLM-augmented multiagent systems for agile software engineering. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering, Sacramento, CA, USA, 27 October–1 November 2024; pp. 2476–2477. [Google Scholar] [CrossRef]
- He, J.; Treude, C.; Lo, D. LLM-Based Multi-Agent Systems for Software Engineering: Vision and the Road Ahead. arXiv 2024, arXiv:2404.04834. [Google Scholar] [CrossRef]
- Feng, P.; He, Y.; Huang, G.; Lin, Y.; Zhang, H.; Zhang, Y.; Li, H. AGILE: A Novel Reinforcement Learning Framework of LLM Agents. arXiv 2024, arXiv:2405.14751. [Google Scholar] [CrossRef]
- Jin, H.; Huang, L.; Cai, H.; Yan, J.; Li, B.; Chen, H. From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future. arXiv 2024, arXiv:2408.02479. [Google Scholar] [CrossRef]
- Rasheed, Z.; Sami, M.A.; Kemell, K.K.; Waseem, M.; Saari, M.; Systä, K.; Abrahamsson, P. CodePori: Large-Scale System for Autonomous Software Development Using Multi-Agent Technology. arXiv 2024, arXiv:2402.01411. [Google Scholar] [CrossRef]
- Talebirad, Y.; Nadiri, A. Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM Agents. arXiv 2023, arXiv:2306.03314. [Google Scholar] [CrossRef]
- Li, H.; Chong, Y.Q.; Stepputtis, S.; Campbell, J.; Hughes, D.; Lewis, M.; Sycara, K. Theory of Mind for Multi-Agent Collaboration via Large Language Models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 6–10 December 2023; pp. 180–192. [Google Scholar] [CrossRef]
- Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.; Pfohl, S.; et al. Publisher Correction: Large language models encode clinical knowledge. Nature 2023, 620, E19. [Google Scholar] [CrossRef]
- Scaled Agile, Inc. SAFe 6.0 Framework; Scaled Agile, Inc.: Boulder, CO, USA, 2024. [Google Scholar]
- Kim, A.G.; Muhn, M.; Nikolaev, V.V. Financial Statement Analysis with Large Language Models. arXiv 2024, arXiv:2407.17866. [Google Scholar] [CrossRef]
- Chiang, C.H.; Lee, H.y. Can Large Language Models Be an Alternative to Human Evaluations? In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, ON, Canada, 9–14 July 2023; pp. 5607–15631. [Google Scholar] [CrossRef]
- Rocha, F.G.; Misra, S.; Soares, M.S. Guidelines for Future Agile Methodologies and Architecture Reconciliation for Software-Intensive Systems. Electronics 2023, 12, 1582. [Google Scholar] [CrossRef]
- Highsmith, J.A. Agile Project Management: Creating Innovative Products, 2nd ed.; The Agile Software Development Series; Addison-Wesley: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Schwaber, K.; Sutherland, J. The Scrum Guide: The Definitive Guide to Scrum: The Rules of the Game. Available online: https://scrumguides.org/scrum-guide.html (accessed on 24 December 2024).
- Knaster, R.; Leffingwell, D. SAFe Distilled: SAFe 5.0: Achieving Business Agility with the Scaled Agile Framework; Addison-Wesley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Ebert, C.; Paasivaara, M. Scaling agile. IEEE Softw. 2017, 34, 98–103. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson Series in Artificial Intelligence; Pearson: Hoboken, NJ, USA, 2021. [Google Scholar]
- OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; et al. GPT-4 Technical Report. arXiv 2024, arXiv:2303.08774. [Google Scholar] [CrossRef]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.d.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al. Evaluating Large Language Models Trained on Code. arXiv 2021, arXiv:2107.03374. [Google Scholar]
- Svyatkovskiy, A.; Deng, S.K.; Fu, S.; Sundaresan, N. IntelliCode compose: Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual, 17–18 November 2020; pp. 1433–1443. [Google Scholar] [CrossRef]
- Weng, L. LLM-Powered Autonomous Agents; Online Resource, 2023. Available online: https://lilianweng.github.io/posts/2023-06-23-agent/ (accessed on 24 December 2024).
- Hang, C.N.; Wei Tan, C.; Yu, P.D. MCQGen: A large language model-driven MCQ generator for personalized learning. IEEE Access Pract. Innov. Open Solut. 2024, 12, 102261–102273. [Google Scholar] [CrossRef]
- Wooldridge, M.J. An Introduction to Multiagent Systems, 2nd ed.; Wiley: Chichester, UK, 2012. [Google Scholar]
- Kostka, A.; Chudziak, J.A. Synergizing logical reasoning, long-term memory, and collaborative intelligence in multi-agent LLM systems. In Proceedings of the Pacific Asia Conference on Language, Information and Computation (PACLIC 38), Tokyo, Japan, 7–9 December 2024. [Google Scholar]
- Chudziak, J.A.; Wawer, M. ElliottAgents: A natural language-driven multi-agent system for stock market analysis and prediction. In Proceedings of the 38th Pacific Asia Conference on Language, Information and Computation, Tokyo, Japan, 7–9 December 2024. (In Press). [Google Scholar]
- Durfee, E.; Lesser, V.; Corkill, D. Trends in cooperative distributed problem solving. IEEE Trans. Knowl. Data Eng. 1989, 1, 63–83. [Google Scholar] [CrossRef]
- Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 4, 151–162. [Google Scholar] [CrossRef]
- Younge, A.J.; von Laszewski, G.; Wang, L.; Lopez-Alarcon, S.; Carithers, W. Efficient resource management for Cloud computing environments. In Proceedings of the International Conference on Green Computing, Chicago, IL, USA, 15–18 August 2010; pp. 357–364. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Chau, T.P.; Nguyen, P.X.; Bui, N.D.Q. AgileCoder: Dynamic Collaborative Agents for Software Development based on Agile Methodology. arXiv 2024, arXiv:2406.11912. [Google Scholar]
- Jennings, N.R. On agent-based software engineering. Artif. Intell. 2000, 117, 277–296. [Google Scholar] [CrossRef]
- Weiss, G. (Ed.) Multiagent Systems, 2nd ed.; Intelligent Robotics and Autonomous Agents; The MIT Press: Cambridge, MA, USA; London, UK, 2013. [Google Scholar]
- Ferber, J.; Ferber, J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st ed.; Addison-Wesley: Boston, MA, USA, 1999. [Google Scholar]
- Qian, C.; Liu, W.; Liu, H.; Chen, N.; Dang, Y.; Li, J.; Yang, C.; Chen, W.; Su, Y.; Cong, X.; et al. ChatDev: Communicative Agents for Software Development. arXiv 2024, arXiv:2307.07924. [Google Scholar]
- Fenton, N.E.; Bieman, J. Software Metrics: A Rigorous and Practical Approach, 3rd ed.; Innovations in Software Engineering and Software Development; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Cinkusz, K.; Chudziak, J. Communicative agents for software project management and system development. In Proceedings of the 21th International Conference on Modeling Decisions for Artificial Intelligence MDAI 2024, Tokyo, Japan, 27–31 August 2024; Torra, V., Narukawa, Y., Kikuchi, H., Eds.; ISBN 978-91-531-0238-0. [Google Scholar]
- Qiao, B.; Li, L.; Zhang, X.; He, S.; Kang, Y.; Zhang, C.; Yang, F.; Dong, H.; Zhang, J.; Wang, L.; et al. TaskWeaver: A Code-First Agent Framework. arXiv 2024, arXiv:2311.17541. [Google Scholar]
- Shinn, N.; Cassano, F.; Berman, E.; Gopinath, A.; Narasimhan, K.; Yao, S. Reflexion: Language Agents with Verbal Reinforcement Learning. arXiv 2023, arXiv:2303.11366. [Google Scholar]
- LangChain. Version 0.2. Introduction to LangChain. Online Resource. 2023. Available online: https://python.langchain.com/v0.2/docs/introduction/ (accessed on 24 December 2024).
- LangChain. Version 0.2. LangChain Core API Reference. Online Resource. 2023. Available online: https://python.langchain.com/v0.2/api_reference/core/index.html (accessed on 24 December 2024).
- Peeperkorn, M.; Kouwenhoven, T.; Brown, D.; Jordanous, A. Is Temperature the Creativity Parameter of Large Language Models? arXiv 2024, arXiv:2405.00492. [Google Scholar]
- Mazumder, M.; Banbury, C.; Yao, X.; Karlaš, B.; Rojas, W.G.; Diamos, S.; Diamos, G.; He, L.; Parrish, A.; Kirk, H.R.; et al. DataPerf: Benchmarks for Data-Centric AI Development. arXiv 2023, arXiv:2207.10062. [Google Scholar]
- Chudziak, J.; Cegielski, R.W.; Meyer, J. Communication management and its impact on successful IT program. IADIS Int. J. Comput. Sci. Inf. Syst. 2008, 1, 14–28. [Google Scholar]
- Horling, B.; Lesser, V. A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 2004, 19, 281–316. [Google Scholar] [CrossRef]
- Choinski, M.; Chudziak, J.A. Ontological Learning Assistant for Knowledge Discovery and Data Mining. In Proceedings of the 2009 International Multiconference on Computer Science and Information Technology, Mragowo, Poland, 12–14 October 2009; pp. 147–155. [Google Scholar] [CrossRef]
- Cabrero-Daniel, B. AI for Agile development: A Meta-Analysis. arXiv 2023, arXiv:2305.08093. [Google Scholar]
- Guo, T.; Chen, X.; Wang, Y.; Chang, R.; Pei, S.; Chawla, N.V.; Wiest, O.; Zhang, X. Large Language Model based Multi-Agents: A Survey of Progress and Challenges. arXiv 2024, arXiv:2402.01680. [Google Scholar]
- Tariverdi, A. Trust from Ethical Point of View: Exploring Dynamics Through Multiagent-Driven Cognitive Modeling. arXiv 2024, arXiv:2401.07255. [Google Scholar]
- Lin, F.; Kim, D.J.; Chen, T.-H. SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents. arXiv 2024, arXiv:2403.15852. [Google Scholar]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Multi-Agent Systems: A Survey. IEEE Access 2018, 6, 28573–28593. [Google Scholar] [CrossRef]
- Amirkhani, A.; Barshooi, A.H. Consensus in multi-agent systems: A review. Artif. Intell. Rev. 2022, 55, 3897–3935. [Google Scholar] [CrossRef]
- Echterhoff, J.M.; Liu, Y.; Alessa, A.; McAuley, J.; He, Z. Cognitive bias in decision-making with LLMs. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, FL, USA, 12–16 November 2024; Al-Onaizan, Y., Bansal, M., Chen, Y.N., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 12640–12653. [Google Scholar] [CrossRef]
- Scaled Agile, Inc. SAFe Scrum. Online Resource. 2024. Available online: https://scaledagileframework.com/safe-scrum/ (accessed on 24 December 2024).
Feature/Characteristic | Description and Role in Addressing Challenges |
---|---|
Cognitive assistance | LLM-powered agents provide human-like reasoning capabilities, enabling them to interpret natural language requirements and adapt to changing project contexts. This aligns with previous analyses highlighting the need for intelligent automation in complex software projects [23,34]. |
Automation of routine tasks | By automating coding, documentation, and backlog refinement, the framework reduces human workload and cognitive overhead, allowing team members to focus on strategic decisions. Prior studies show that LLM-based code generation and documentation support improve productivity [11,36]. |
Scalability and Agile alignment | CogniSim integrates seamlessly with Agile methodologies, particularly SAFe, ensuring synchronized development, continuous improvement, and effective communication across multiple teams and large-scale projects [4,25]. |
Quality assurance and methodology adherence | Specialized agents continuously verify that deliverables meet coding standards, adhere to Agile processes, and align with strategic objectives. This ensures high-quality outputs, as evidenced by the importance of formal quality metrics in software engineering [3,51]. |
Agent Category | Primary Functions |
---|---|
Manager Agents | Decision-making, resource allocation, project oversight |
Executor Agents | Task execution (coding, testing, documentation) |
Quality Checker Agents | Quality assurance, code reviews, output validation |
Methodology Reviewer Agents | Process monitoring, adherence to Agile practices, feedback provision |
Parameter | Description | Possible Values |
---|---|---|
Model type | The language model used for agent responses. | GPT-3.5-turbo, GPT-4. |
Number of iterations | Number of turns or exchanges between agents. | Any positive integer (e.g., 10, 50, 100). |
Temperature | Controls randomness in the model’s output (creativity level). | 0.0 (deterministic) to 1.0 (maximum randomness) [57]. |
Max tokens | Maximum length of responses from agents. | Any positive integer (e.g., 150, 500). |
Agent roles | Different roles or agents involved in the simulation. | Product Management, System Architect, Development Team, QA Engineer, etc. |
Prompt templates | Different initial prompts or instructions for agents. | Varied prompts per agent to test impact on responses. |
Input variables | Specific input data provided to agents (e.g., client analysis, objectives). | Different scenarios or datasets for testing. |
Selection function | Method for selecting the next speaker in the simulation. | Alternate speakers, random selection, directed selection. |
Elaboration functions | Use of functions that elaborate or expand on topics (e.g., topic elaboration). | Enabled, disabled. |
API parameters | Other OpenAI API parameters like presence_penalty, frequency_penalty. | presence_penalty: −2.0 to 2.0; frequency_penalty: −2.0 to 2.0. |
Agent memory | Amount of prior conversation history agents remember. | Full memory, limited memory (e.g., last 3 messages). |
Agent personality or style | Communication style of agents (affects language used). | Formal, casual, technical, persuasive. |
Sim ID | Model Type | Iterations | Temperature | Agents Involved | Notes |
---|---|---|---|---|---|
1 | GPT-3.5-turbo | 10 | 0.7 | Product Management, System Architect | Baseline simulation |
2 | GPT-4 | 10 | 0.7 | Product Management, System Architect | Testing with GPT-4 |
3 | GPT-3.5-turbo | 50 | 0.7 | Product Management, System Architect | Increased iterations |
4 | GPT-3.5-turbo | 10 | 0.5 | Product Management, System Architect | Lower temperature (less randomness) |
5 | GPT-3.5-turbo | 10 | 0.9 | Product Management, System Architect | Higher temperature (more randomness) |
6 | GPT-3.5-turbo | 10 | 0.7 | Product Management, System Architect, Dev Team | Added Development Team agent |
Sim ID | Model Type | Unique Content | Diversity Score | Completion Score | Sentiment Stability |
---|---|---|---|---|---|
1 | gpt-3.5-turbo | 100.00 | 0.45 | 50.00 | 0.00 |
2 | gpt-4 | 100.00 | 0.77 | 0.00 | 100.00 |
3 | gpt-3.5-turbo | 83.67 | 0.43 | 50.00 | 100.00 |
4 | gpt-3.5-turbo | 11.11 | 0.46 | 0.00 | 100.00 |
5 | gpt-3.5-turbo | 33.33 | 0.46 | 0.00 | 100.00 |
6 | gpt-3.5-turbo | 100.00 | 0.63 | 50.00 | 33.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinkusz, K.; Chudziak, J.A.; Niewiadomska-Szynkiewicz, E. Cognitive Agents Powered by Large Language Models for Agile Software Project Management. Electronics 2025, 14, 87. https://doi.org/10.3390/electronics14010087
Cinkusz K, Chudziak JA, Niewiadomska-Szynkiewicz E. Cognitive Agents Powered by Large Language Models for Agile Software Project Management. Electronics. 2025; 14(1):87. https://doi.org/10.3390/electronics14010087
Chicago/Turabian StyleCinkusz, Konrad, Jarosław A. Chudziak, and Ewa Niewiadomska-Szynkiewicz. 2025. "Cognitive Agents Powered by Large Language Models for Agile Software Project Management" Electronics 14, no. 1: 87. https://doi.org/10.3390/electronics14010087
APA StyleCinkusz, K., Chudziak, J. A., & Niewiadomska-Szynkiewicz, E. (2025). Cognitive Agents Powered by Large Language Models for Agile Software Project Management. Electronics, 14(1), 87. https://doi.org/10.3390/electronics14010087