Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = non-isolated four-port DC-DC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9795 KiB  
Article
Research on the Integrated Converter and Its Control for Fuel Cell Hybrid Electric Vehicles with Three Power Sources
by Yuang Ma and Wenguang Luo
Electronics 2025, 14(1), 29; https://doi.org/10.3390/electronics14010029 - 25 Dec 2024
Viewed by 419
Abstract
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research [...] Read more.
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research on DC-DC converters with good energy flow management and high integration is a trend to solve such problems. Based on the analysis of the basic functional structure of the converter, this paper designs a buffering unit circuit with energy collection and distribution functions and appropriately connects it with the pulse unit circuit of the converter. Through device optimization reuse and power transmission path integration, a class of non-isolated four-port DC-DC converters is constructed, which consists of an auxiliary energy charging module, input energy source control module, braking energy feedback module and forward bootstrap boost circuit. This converter has two bi-directional ports, a uni-directional input and a bi-directional output, for separate connection to the power batteries, supercapacitors, fuel cells and DC bus. It can adapt to the fluctuation of the vehicle’s driving condition while achieving dynamic and flexible regulation of power flow and can flexibly allocate power according to the load current and voltage level of energy. It can realize a total of 14 operation modes, including six output power supply operation modes, five auxiliary power charging operation modes, and three braking energy regeneration operation modes. Furthermore, the mathematical model of this converter is constructed using the state-average method and the small-signal modeling method in order to achieve the responsiveness and stability of switching multiple operating modalities. The PI control parameters are optimized using the particle swarm optimization algorithm to achieve optimized control of the converter. The simulation system is set up using MATLAB R2024a to verify that the proposed converter topology and algorithm can dynamically allocate appropriate current paths to manipulate the power flow under various operating conditions, effectively improving the utilization rate and efficiency of energy. The converter has the characteristics of high gain and high power density, which is suitable for three-energy fuel cell hybrid electric vehicles. Full article
Show Figures

Figure 1

Back to TopTop