1 BASIC
FOR	CALCULATION
1 In	the	calculation	only	three	phase	symmetrical	fault	has	been	considered.
2 A	simplified	procedure	for	calculating	the	symmetrical	short		circuit	current	called	the	E/X	method	is	used,	
which	disregards	all	resistance,all	static	load	and	all	prefault	current.
3 The	PU	system	is	adopted	for	fault	calculations	as	it	simplifies	the	calculations
4 Since	X/R	ratio	of	the	effective	impedance	at	the	bus	is	unknown,It	si	considered	that	the	calculated	current	
should	not	more	than	80%	of	the	allowed	valve	for	the	breaker	at	the	existing	bus	voltage.
5 Motor	Contribution	has	been	considered	as	2	times	the	rated	current	of	HT	motors	and	negligible	in	case	of	LT	motors.
6 For	claculation,the	impedances	of	cables	has	been	neglected.
7 The	distribution	transformers	in	different	load	centres	of	the	plant	shall	operate	in	isolation	and	not	in	parallel.
8 The	utility	fault	level	has	been	considered	as	600	MVA.
2 DESIGN	DATA	:
a Utility	fault	level	at	plant	grid
600
MVA
b Base	MVA	chosen
25
MVA
c) Distribution	Transformer
1 Rated	capacity
3.15
2 Voltage	at	HT	side
11
KV
3 Voltage	at	LT	side(full	load)
0.380
KV
4 Percentage	impedance
d) Rating	of	HT	motors
1 HT	motor	rating
MVA
4150
Kw
2 Motor	Power	factor
0.85
red
3 Motor	efficiency
0.95
4 Maximum	starting	torque	considered	for	
the	motor	at	11kv
200
%	FLT
5 Maximum	Running	torque	considered	for	
the	motor	at	11kv
Cable	Size	XLPE,Armoured
100
%	FLT
240
Sqmm
Cable	no	of	run
No.
5 HT	motor	fed	from	cable	
5Rx3x240Sqmm	XLPE	CU	(Z)
0.23
ohm/km
6 HT	motor	fed	from	cable	length
150
ohm/km
e) Rating	of	LT	motors
1 LT	motor	rating
350
Kw
2 Motor	Power	factor
0.85
red
3 Motor	efficiency
0.90
4 Maximum	starting	torque	considered	for	
the	motor	at	11kv
200
%	FLT
4 Maximum	Running	torque	considered	for	
the	motor	at	11kv
100
%	FLT
1.5
Sqmm
Cable	Size	XLPE,Armoured
Cable	no	of	run
5 LT	motor	fed	from	cable	
3Rx4x300Sqmm	XLPE	CU	(Z)
0.020
6 LT	motor	fed	from	cable	Length
70
No.
ohm/km
mtr
FAULT	CURRENT	CALCULATION	FOR	HT	(UP	TO	NEAREST	MOTOR	TERMINAL	FROM	SOURCE)
FAULT	CURRENT	AT	33KV	SWITCHGEAR	AT	APTRANSCO	END
1.1
Calculation	for	source	impedance	(Zo)
System	Voltage	(KV)
33
Sorce	Fault	MVA
500
Source	Impedance	(Z0)	in	Ohm
ZO
1.2
Fault	Current	at	33KV	Switchgear	at	APTRANSCO	End	(IF0)
IFO
KV
MVA
2
System	KV
Short	Circuit	MVA
ohm
Square	(33)
500
ohm
2.178
ohm
1.1	X	KV
	3	X	ZO
kA
1.1	x	33
	3	X	2.178
kA
9.62
kA
FAULT	CURRENT	AT	33KV	SWITCHGEAR	AT	PROPOSED	SUBSTATION
2.1
Main	Incoming	power	supply	through	33kV,	1R	X	3C	X	300Sq.mm.	Aluminium	armoured	Cable	from	APTRANSCO	Substation	to	Plant	
Substation
Resistance	of	cable	(	R	)	(Resistance	/	Km)
=
0.130
ohm/Km
Length	of	Cable	(L)
1500
No.of	Run	(N)
R	x	L
(N	x	1000)
ohm	
0.195
ohm
0.100
ohm/Km
X	x	L
(N	x	1000)
ohm	
0.150
ohm
(Ra2		+	Xa2)
ohm
0.2460
ohm
Za	+	Zo
2.425
Actual	Resistance	of	Cable	(Ra)
Ra
2.2
Reactance	of	cable	(X)	(Reactance/Km)
Actual	Reactance	of	Cable	(Xa)
Xa
2.3
Impedance	of	Cable	(Za)
2.4
Total	Impedance	at	33KV	SWGR	at	Substation1(Z1)
Za
Z1
2.5
Fault	Current	at	33KV	SWGR	at	Proposed	Substation	(IF1)
IF1
1.1	X	KV
	3	X	Z1
Meter
No.
ohm
kA
(	1.1	X	33)
(	3	X	2.425)
kA
8.643
kA
Selected	Fault	KA	at	33KV	Bus
25	kA
FAULT	CURRENT	AT	PRIMARY	OF	8MVA,	33/6.9KV	TRANSFORMER	AT	PROPOSED	SUBSTATION
33KV,	1R	X	3C	X	300Sqmm	(E)	Aluminium	armoured	Cable	is	connected	between	33KV	HT	Panel	&	8	MVA	Transformer
3.1
Resistance	of	cable	(Resistance	/	Km)
0.130
Length	of	Cable	(L)
25
Meter
No.of	Run	(N)
No.
R	x	L
(N	x	1000)
ohm	
0.00325
ohm
0.100
X	x	L
(N	x	1000)
ohm	
0.0025
ohm
(Rb2		+	Xb2)
ohm
Actual	Resistance	of	Cable	(Rb)
Rb
3.2
Reactance	of	cable	(X)	(Reactance/Km)
Actual	Reactance	of	Cable	(Xb)
Xb
3.3
Impedance	of	Cable	(Zb)
ohm/km
ohm/Km
Zb
3.4
Total	Impedance	at	33KV	SWGR	at	Substation1(Z1)
Z2
3.5
Fault	Current	at	33KV	SWGR	at	Proposed	Substation	(IF1)
IF2
0.0041
ohm
Zb	+	Z1
ohm
2.430
ohm
1.1	X	KV
kA
	3	X	Z2
(	1.1	X	0.15)
(	3	X	2.43)
kA
8.625
kA
FAULT	CURRENT	AT	SECONDARY	OF	8MVA	TRANSFORMER	AT	SUBSTATION
Power	Transformer	8MVA,	33/6.6	KV	,	8.35%	Impedance	(as	per	IS2026)
4.1
4.2
Primary	Voltage	of	Transformer
Vp
33
KV
Secondary	Voltage	of	Transformer
Vs
6.6
KV
Transformer	Capacity
8000
KVA
%	Impedance
8.35
Transformer	Impedance	(Zc)
(%	Imp/100)	x	KVs ohm
(KVA	/	1000)
Zc
(8.35/100)	x	6.6)
(8000/1000)
Zc
Total	Impedance	on	secondary	side	(Z3	)
Z3
4.3
Fault	Current	at	Secondary	side	of	8MVA	Transformer(IF3)
IF3
0.455
ohm
ohm
{((Vs)/	(Vp))x	Z2	}+	Zc
ohm
((6.6)	/	(33)	X	2.43)	+	0.455
ohm
0.553
1.1	X	KVs
	3	X	Z3
ohm
KA
(	1.1	X	X	x	L)
(	3	X	0.553)
kA
7.580
KA
FAULT	CURRENT	AT	6.6	KV	HT	PANEL	AT	PROPOSED	SUBSTATION
Incoming	power	supply	through	6.6kV,	3R	X	3C	X	300Sq.mm.	Aluminium	armoured	Cable	from	6.6KV	Terminal	of	Power	Transformer
5.1
Resistance	of	cable	(Resistance	/	Km)
0.129
Length	of	Cable	(L)
25
Meter
No.of	Run	(N)
No.
R	x	L
(N	x	1000)
Actual	Resistance	of	Cable	(Rd)
Rd
5.2
Reactance	of	cable	(X)	(Reactance/Km)
Actual	Reactance	of	Cable	(Xd)
Xd
5.3
Impedance	of	Cable	(Zd)
Zd
5.4
Total	Impedance	at	6.6KV	HT	Panel	(Z4)
Z4
5.5
Fault	Current	at	Proposed	Substation	6.6KV	HT	Panel	(IF4)
IF4
ohm/km
ohm	
0.001075
0.0830
X	x	L
(N	x	1000)
ohm	
0.000691667
ohm
ohm
ohm/Km
(Rd 	+	Xd )
ohm
0.0013
ohm
Zd	+	Z3
0.555
1.1	X	KV
	3	X	Z4
ohm
kA
(	1.1	X	)
(	3	X	0.555)
kA
7.553
kA
Selected	Fault	KA	at	6.6KV	Bus
26.3	kA
FAULT	CURRENT	AT	MOTOR	TERMINAL	(IBC3		nearest)
6.6KV,	1R	X	3C	X	150Sqmm	Aluminium	armoured	Cable	is	connected	between	6.6kV	HT	Panel	&	HT	Motor	terminal
6.1
Resistance	of	cable	(Resistance	/	Km)
0.264
Length	of	Cable	(L)
180
No.of	Run	(N)
Actual	Resistance	of	Cable	(Re)
Re
6.2
Reactance	of	cable	(X)	(Reactance/Km)
Actual	Reactance	of	Cable	(Xe)
Xe
6.3
Impedance	of	Cable	(Ze)
Ze
6.4
Total	Impedance	at	HT	Motor	terminal	(Z5)
Z5
6.5
Fault	Current	at	IBC3	Motor	Terminal	(IF5)
R	x	L
(N	x	1000)
No.
ohm	
0.04752
ohm
0.0890
ohm/Km
X	x	L
(N	x	1000)
ohm	
0.01602
ohm
(Re2		+	Xe2)
ohm
0.0501
ohm
Ze	+	Z4
0.606
IF5
ohm/km
Meter
1.1	X	KV
	3	X	Z5
ohm
kA
(	1.1	X	X	x	L)
(	3	X	0.606)
kA
6.917
kA
3 PU	IMPEDANCES	OF	VARIOUS	EQUIPMENT/SYSTEMS:
1 Base	MVA	chosen
2 PU	impedance	of	Utility
25
MVA
(Base	MVA)
(Utility	MVA)
25
600
25
0.042
= 0.041667 Pu
3 PU	Impedance	of	equipment
=
=
i)	Distribution	transformer(3.15	MVA)
(Base	MVA)	x	(Percentage	Impedance)
(	Equipment	MVA)
25	x	(	8/	100	)
3.15
= 0.634921 Pu
4 FAULT	LEVEL	AT	11	KV	BUS
	Effective	impedance	of	utility
0.041667 Pu
Total	impedance	at	11	kV	bus
0.041667 Pu
Fault	level	corresponding	to	above	value
(Base	MVA)
Total	Pu	Impedance
=
=
600
MVA
(Total	kW	of	HT	motors	x	2)
(1000	x	pf	x	efficiency)
Contribution	of	HT	motors
Contribution	of	HT	motors	assuming	a	p.f.	0.9	
and	efficiency	95%
Fault	Level	corresponding	to	impedance	at	
11kV	bus	+	Contribution	of	HT	motor
= 600	+	10.28
Hence	Fault	current	at	11kv	Bus	
(	4150	x		2	)
	(1000	x	0.85	x	0.95)
10.28
610
610
	(	3	x	11)
MVA
MVA
= 32.03233 kA
The	11kv	Switchgears	with	fault	with	stand	capacity	of	up	to	40kA	is	feasible
a)	Conclusion:	
Fault	Level	at	11	kv	Bus	is	32.0KA
5 FAULT	LEVEL	AT	0.380	KV	BUS
1 Base	MVA	chosen
2 The	pu	impedance	up	to	11kV	bus	to	11kV	bus
Effiective	impedance	of	distribution	
transformer
Fault	level	at	0.380	Kv	bus
=
=
25
Base	MVA
Hight	fault	level	at	11kV	bus
25
610
0.041
pu
0.635
pu
Base	MVA
(The	pu	imedance	up	to	11kV	bus	+	inpedance	of	
distribution	Transformer)
25
(0.041	+	0.635)
Hence	fault	current	at	0.380Kv	bus
MVA
37
37
	(	3	x	0.38)
MVA
56.19
MVA
37
MVA
b)	Conclusion:
Hence	,	the	fault	level	at	0.380kV	bus	
rounded	of	to	the	nearest	integer	Value
6 CALCULATION	FOR	VOLTAGE	DROP
The	per	unit	impedance	of	the	system	components	are	calculated	as	follows	:
i) Per	Unit	impedance	of	the	system	Components:
System	Component
Sr.No.
i) pu	impedance	of	utility
P.U.Impedance
25
=
600
0.23	x		(150/	1000	)	x	25
	3	x	(11^	2	)
0.0417
Pu
0.0024
Pu
ii) HT	main	motor	fed	from	cable	Impedance
5Rx3x240Sqmm	XLPE	CU	for	150mm	length
iii) Starting	of	HT	motor	impedance
4150kW
(25	x	0.85	x	0.95)
(4150	/		1000	)		x	(200/	100	)
2.4323
pu
iii) Running	of	HT	motor	impedance
4150kW
(25	x	0.85	x	0.95)
(350	/		1000	)		x	(100/	100	)
57.679
pu
iv) Distribution	transformer	Impedance 3.15MVA
(25	x		(	8/	100)
3.15
0.635
pu
v) LT	main	motor	fed	from	cable	Impedance
3Rx4x300Sqmm	XLPE	CU	for	70mm	length
0.02	x		(70/	1000	)	x	25
	2	x	(0.38^	2	)
0.121
Pu
vi) Starting	of	LT	motor	impedance
350kW
(25	x	0.85	x	0.9)
(350	/		1000	)		x	(200/	100	)
27.32
Pu
vi) Running	of	LT	motor	impedance
350kW
(25	x	0.85	x	0.9)
(350	/		1000	)		x	(100/	100	)
54.64
Pu
2.4764
Pu
Total	Pu	Impedance
= (0.0417	+	0.0024	+	2.4323)
100
Voltage	requirement	for	stable	starting	of	HT	motor 11kV	,4150kW
System	Component
%	Voltage	Drop
i) Utility	System
ii) 53x240mm2	XLPE	Cable
0.0417
2.476
x	100%
1.68
0.0024
2.4764
x	100%
0.097
1.6839
1.68
1.78
98.22
193.15
iii) Voltage	Drop	upto
11KV	Bus
iv) Voltage	drop	upto	
4150kW	motor	terminals= (1.6839	+	0.097)
v) Voltage	avaliable	to	the	motor
= 100		1.7809
vi) Hence	maximum	starting	torque	normally
avaliable	with	
10.81 Kv
(200	x	10.81	^	2	)
(11^2	)
Conclusion
Higher	starting	torque,however,can	be	achived	by	adjustment	of	electrolyte	strength	of	LRS.
For	starting	of	 4150 kw	motor,the	starting	surrent	have	to	be	resticted	to	less	than	
assumption	the	voltage	drop	is	
1.78
%
200
%	Even	with	above	
Voltage	requirement	for	stable	Running	of	HT	motor 150kV	,0.9kW
System	Component
%	Voltage	Drop
i) Utility	System
ii) 53x240mm2	XLPE	Cable
0.0417
2.476
x	100%
1.68
0.0024
2.4764
x	100%
0.097
1.6839
1.68
1.78
98.22
iii) Voltage	Drop	upto
11KV	Bus
iv) Voltage	drop	upto	
4150kW	motor	terminals= (1.6839	+	0.097)
v) Voltage	avaliable	to	the	motor
= 100		1.7809
vi) Hence	maximum	starting	torque	normally
avaliable	with	
10.81 Kv
(100	x	10.81	^	2	)
(11^2	)
96.58
Conclusion
Higher	starting	torque,however,can	be	achived	by	adjustment	of	electrolyte	strength	of	LRS.
For	Running	of	 0.9 kw	motor,the	starting	surrent	have	to	be	resticted	to	less	than	
assumption	the	voltage	drop	is	
1.78
%
%	Even	with	above	
Voltage	requirement	for	stable	starting	of	LT	motor 0.38kV	,350kW
squirrel	cage	induction	motor	with	DOL	starter.
Total	Pu	Impedance
= (0.0417	+	0.635	+	0.1212+27.3215)
System	Component
28.119
Pu
%	Voltage	Drop
i) Utility	System
ii) Distribution	transformer 3.15MVA
iii) 3Rx4x300Sqmm	XLPE	CU	Cable
0.0417
28.119
x	100%
0.15
0.6350
28.119
x	100%
2.26
0.1212
28.119
x	100%
0.440
0.15
0.15
2.85
97.15
189
iv) Voltage	Drop	upto	
0.38	KV	Bus
v) Voltage	drop	upto
350kW	motor	terminals = (0.15	+	0.44	+2.26)
vi) Voltage	avaliable	to	the	motor
= 100		2.85
vii) Hence	maximum	starting	torque	normally
avaliable	with	
369
V
(200	x	369.17	^	2	)
((0.38	x	100	)^	2)
368.6
viii) Higher	staring	torque,	however	can	be	achieved	by	VVVF	drive
380
Voltage	requirement	for	stable	Running	of	LT	motor kV	,3.15kW
squirrel	cage	induction	motor	with	DOL	starter.
Total	Pu	Impedance
= (0.0417	+	0.635	+	0.1212+54.6429)
System	Component
54.81
Pu
%	Voltage	Drop
i) Utility	System
ii) Distribution	transformer
MVA
iii) 3Rx4x300Sqmm	XLPE	CU	Cable
0.0417
54.806
x	100%
0.08
0.6350
54.806
x	100%
1.16
0.1212
54.806
x	100%
0.230
0.08
0.08
1.47
98.53
94
iv) Voltage	Drop	upto	
	KV	Bus
v) Voltage	drop	upto
3.15kW	motor	terminals = (0.08	+	0.23	+1.16)
vi) Voltage	avaliable	to	the	motor
= 100		1.47
vii) Hence	maximum	starting	torque	normally
avaliable	with	
374.41 V
(100	x	374.414	^	2	)
((0.38	x	100	)^	2)
viii) Higher	staring	torque,	however	can	be	achieved	by	VVVF	drive
CALCULATION	FOR	SELECTION	OF	CABLE	SIZES	FOR	VARIOUS	RATING	OF	LT	MOTORS
PU	impedance	of	Utility
0.0417
0.0417 pu
Distribution	transformer	Impedance 3.15MVA
0.6350
0.6350 pu
0.6767 pu
Therefor	,pu	impedance	upto	
0.38	kV	Bus = 0.0417+0.635
Base	MVA
25
MVA
Motor	Rating
350
kw
Motor	Voltage	rating
380
Motor	full	load	current
Motor	full	load	current
Power	Factor
25 MVA
(350	x	1000)
	(	3	x	(380	x	1000)	x	0.85	x	0.95)
695.13
Motor	Efficiency
0.90
Cos	
0.85
rad
Sin	
0.53
rad
Al =
1.5
Sqmm
Cable	From	MCC	to	Motor
Cable	Size	
Cable	Impedance	z%
Z	% =
0.020
Cable	Length
(L) =
70
ohm/mtr
mtr
No.of	Run	of	the	Cable
(N) =
No.
AC	resistance	of	the	cable	at	90C
Reactance	of	the	cable	at	50Hz
= 0.000107 	/mtr
0.02317 	/mtr
The	pu	impedance	of	150m	(typical)	cable	of	different	sizes	is	calculated	as	follows	:
= %Z	of	Cable	x	Base	MVA	x	Length	of	cable	in	kms
2
(kV)
=
(	%	Z	Ohm/km	x	25	x	70/	1000	)
(380x	1000^2)
= 	(	Z%	Ohm/km	x	12.12)
Pu	Impedance	of	the	Cable
Voltage	drop	of	the	selected	cable
Voltage	drop	of	the	selected	cable
242.40
pu	
695.13
1
(	x	0.02	x	70)
16.43
=
=
16.43
x	100
(380	/	3	)
2.50
The	starting	KVA	of	motors	is	calculated	as:
For	squirrel	cage	induction	motors
Starting	KVA
	Kw	x	6
Efficiency	x	Power	factor
(k	W	x	6)
(0.9	x	0.85)
kw		X	
7.84
= 2745.098 KVA
For	Slip	ring	induction	motors
Starting	KVA
	Kw	x	2.5
Efficiency	x	Power	factor
= (k	W	x	2.5)
(0.9	x	0.85)
=
kw		X	
3.27
= 1143.791 KVA
For	squirrel	cage	induction	motors
Running	KVA
	Kw	x	1
Efficiency	x	Power	factor
(k	W	x	1)
(0.9	x	0.85)
kw		X	
1.31
= 457.5163 KVA
12.12