3.155J/6.
152J Lecture 2:
IC Lab Overview
Massachusetts Institute of Technology
02/09/2004
Slides prepared by Professor Martin Schmidt
Outline
The MOSFET Structure
Semiconductor Doping
The MOSFET as a Switch
A MOSFET Process
The MOS Capacitor Process
Reading Assignment
Plummer, Chapter 1
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 2
1
MOSFET
G
S D
D
Gate G
Oxide
Source Drain
Bulk
S
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 3
N-Channel MOSFET
+VG
0V +VD
Gate
Oxide
n-type n-type
p-type
0V
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 4
2
Silicon bond model: electrons and holes
Electronic structure of
Si is Column IV of the periodic table:
silicon atom:
10 core electrons (tightly
bound)
4 valence electrons (loosely
bound, responsible for most
of the chemical properties)
Other semiconductors:
Ge, C (diamond form)
GaAs, InP, InGaAs,
InGaAsP, GaN, ZnSe, CdSe,
CdTe (on the average, 4
valence electrons per atom)
(From Howe & Sodini)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 5
Silicon is a Semiconductor—
Silicon is a crystalline
material
Long range orientational and
positional order
Two types of “carriers”
(mobile charge particles):
electrons and holes
Carrier concentrations can be
controlled over many orders
of magnitude by addition
“dopants”
selected foreign atoms
Carrier concentrations can be
controlled electrostatically
(From Howe & Sodini)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 6
3
A Word About Doping….
Silicon has four valence electrons
It covalently bonds with 4 adjacent atoms in the crystal lattice
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 7
Intrinsic Semiconductor
Increasing Temperature Causes Creation of Free Carriers
1010 cm-3 free carriers at 23C (out of 2x1023 cm-3)
Intrinsic Conductivity
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si
+
Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 8
4
N-type Doping
Phosphorus has 5 valence electrons
‘Donates’ one conduction electron – n-type
Our substrate has 1015 cm-3 phosphorus (1 in 108)
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si P Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 9
P-type Doping
Boron has 3 valence electrons
‘Accepts’ one electron from lattice
Creates a ‘hole’ – p-type
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si B Si Si Si Si
Si Si Si Si Si Si Si Si Si
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 10
5
Counter Doping
The addition of one more B than P causes the
doping type to change from n-type to p-type
Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si
Si Si Si Si P Si Si Si Si
Si Si Si Si B Si Si Si Si
Si Si Si Si Si Si Si Si Si
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 11
Counter Doping Process
n-type (1015 cm-3)
Implant Boron
and Anneal
1015 Concentration
p-type (>1015 cm-3)
n-type (1015 cm-3)
Depth
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 12
6
P/N Junction
+ - + - + - + + - + - + - +
- + - + - + - - + - + - + -
+ - + - + - + + - + - + - +
- + - + - + - - + - + - + -
+ - + - + - + + - + - + - +
- + - + - + - - + - + - + -
+ - + - + - + + - + - + - +
p-type n-type
Depletion Region
- +
- +
- +
- +
p-type - + n-type
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 13
P/N Junction - Diode
I - + I
- +
- +
- +
p-type - + n-type
V
+ V -
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 14
7
N-Channel MOSFET Operation
0V +VG
0V +VD
+++++++++++++++++
Oxide
----------------
n-type n-type
p-type
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 15
MOSFET as a Switch
0V +VG
0V +VD 0V +VD
Gate Gate
Oxide Oxide
n-type n-type n-type n-type
p-type p-type
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 16
8
Microfabricated Devices
Starting Material
Single crystal silicon
Mask Set
Contains x,y info
(Top View)
Process Sequence
Contains z info
(Cross Section)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 17
Sample Mask Set
Four Levels (Masks)
Mask Definition
1 Active Area
2 Polysilicon
3 Contact Cuts
4 Aluminum
Transistor Diffusion Polysilicon Metal
(MOSFET) Resistor Resistor Resistor
Spring 2005 (Diode) 3.155J/6.152J – Lecture 2 – Slide 18
9
Our Process
p-channel
Poly Gate pMOS
Metal-Oxide-Semiconductor (MOSFET)
Polycrystaline Silicon
polysilicon
Source Gate Drain
-------
p +++++++ p
n-silicon
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 19
Starting Material
6” (150mm) Diameter Silicon Wafer
30 +/- 1 mil thick (~750 µm)
n-type (doped with Phosphorus)
1.5 Ω-cm resistivity (1015 cm-3 Phos)
<100> crystal orientation
Minor Flat
<100>
Major Flat
Spring 2005
<110> 3.155J/6.152J – Lecture 2 – Slide 20
10
FET Process Steps
1. Characterize the wafer (resistivity, orientation, and type)
2. Grow 5000A ‘Field Oxide’ for device isolation
Typically at 800-1100C for 1 hour in O2 or steam
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 21
Process Steps
3. Pattern Active Area (Mask #1)
Coat with
photoresist
Expose
Mask
Develop
Etch*
Strip resist
*Wet etch
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 22
11
Process Steps
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 23
Process Steps
4. Grow 500A Gate Oxide
5. Deposit 5000A Polysilicon by LPCVD (low pressure
chemical vapor deposition)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 24
12
Process Steps
6. Pattern Polysilicon (Mask #2)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 25
Process Steps
7. Etch Gate Oxide
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 26
13
Process Steps
8. Ion Implantation of Boron
B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+
9. Drive-In (950C in O2)
Note self alignment
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 27
Process Steps
10. Strip Backside
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 28
14
Process Steps
11. Pattern Contact Cuts (Mask #3)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 29
Process Steps
12. Evaporate Aluminum
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 30
15
Process Steps
13. Pattern Aluminum (Mask #4)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 31
Process Steps
14. Sinter (400C – N2:H2)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 32
16
Process Results
The Four Mask Process Yields
Resistors
Metal
Polysilicon
Diffusion
Capacitors
Metal-Silicon
Metal-Polysilicon
Polysilicon-Silicon
Gate Oxide
Field Oxide
Diode
MOSFET
Bipolar Junction Transistor (low quality)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 33
Our Labs
Lab Session 1
1.1 Lab Safety and Cleanroom Orientation
1.2 RCA (ICL RCA)
1.3 Gate Oxidation
Thermco Atmospheric Furnace (5D-FieldOx)
Dry Oxidation, 1000°C 60 minutes
1.4 Doped Polysilicon Deposition
Thermco LPCVD (6A-Poly)
Lab Session 2
2.1 Measure oxide thickness (UV1280)
2.2 HMDS, Photoresist Application, Postbake (SSI coater track)
2.3 Dry etch backside polysilicon (LAM490B)
2.4 Etch backside oxide in BOE until de-wet (OxEtch-BOE)
2.5 Strip frontisde resist with Matrix System One Stripper (Asher)
Lab Session 3
3.1 HMDS, Photoresist Application, Pre-bake (SSI coater track)
3.2 Exposure, Development, and Inspection (I-Stepper)
3.3 Dry-etch polysilicon (LAM490B)
3.4 Strip photoresist with Matrix System One Stripper (Asher)
3.5 Visual Inspection.
3.6 HF dip for 30 s (ICL Pre-Metal)
3.7 Device characterization: MOS Capacitor
Determine oxide capacitance.
Determine bulk dopant concentration.
Determine fixed interface charge.
3.8 Sheet resistance measurement: Van der Pauw structure
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 34
17
Lab Session 1
1.1 Lab Safety and Cleanroom Orientation
1.2 RCA (ICL RCA)
1.3 Gate Oxidation
Thermco Atmospheric Furnace (5D-FieldOx)
Dry Oxidation, 1000°C 60 minutes
1.4 Doped Polysilicon Deposition
Thermco LPCVD (6A-Poly)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 35
Lab Session 2
2.1 Measure oxide thickness (UV1280)
2.2 HMDS, Photoresist Application, Postbake
(SSI coater track)
2.3 Dry etch backside polysilicon (LAM490B)
2.4 Etch backside oxide in BOE until de-wet
(OxEtch-BOE)
2.5 Strip frontisde resist with Matrix System
One Stripper (Asher)
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 36
18
Lab Session 3
3.1 HMDS, Photoresist Application, Pre-bake
(SSI coater track)
3.2 Exposure, Development, and Inspection
(I-Stepper)
3.3 Dry-etch polysilicon (LAM490B)
3.4 Strip photoresist with Matrix System One
Stripper (Asher)
3.5 Visual Inspection
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 37
Lab Session 3 (con’t.)
3.6 HF dip for 30 s (ICL Pre-Metal)
3.7 Device characterization: MOS Capacitor
Determine oxide capacitance.
Determine bulk dopant concentration.
Determine fixed interface charge.
3.8 Sheet resistance measurement: Van der
Pauw structure
Spring 2005 3.155J/6.152J – Lecture 2 – Slide 38
19