3.155J / 6.
152J
Micro / Nano Processing Technology
Lecture 1
Course Overview
6.152J/3.155J Spring Term 2005 Lecture 1 1
Outline
• Introductions
– Staff
– You
• Motivation
• Course Organization
– Handout
• Lab Assignments
• Safety
6.152J/3.155J Spring Term 2005 Lecture 1 2
1
Course Staff
INSTRUCTORS: Prof. A. I. (Tayo) Akinwande Room 39-553
(617) 258-7974
akinwand@mtl.mit.edu
Dr. Robert O’Handley Room 04-045
(617) 253-6913
bobohand@mtl.mit.edu
LABORATORY Li-Wen Wang Room 39-213
INSTRUCTOR (617) 452-3509
liwon@mtl.mit.edu
WRITING Mya Poe myapoe@mit.edu
INSTRUCTOR
TEACHING Joseph J Rumpler Room: 13-3030
ASSISTANTS Tel: (617) 253-5165
rumpler@mit.edu
Daniel Gerd Pressl Room 39-211
dgp@mit.edu
COURSE Carolyn Collins Room 39-553
ASSISTANT (617) 253-0573
zaccaria@mtl.mit.edu
6.152J/3.155J Spring Term 2005 Lecture 1 3
Tiny Technologies
• A definition which captures two extremes:
– Miniaturization
• Making things smaller, often using Integrated
Circuit process technologies
– Atom-level Manipulation/Assembly/Growth
• Often to achieve a unique material property
– e.g. Carbon Nanotubes, Silicon Nanowires, Quantum Dots
– We will focus on the former
Slide provided by
Professor Martin Schmidt
6.152J/3.155J Spring Term 2005 Lecture 1 4
2
Let’s look inside a system...
Personal Computer:
Circuit Board: Integrated Circuit:
Hardware & Software
500M - 1B devices 5M devices
Gate: Cell:
10 devices 50 devices Module:
100K devices
MOSFE Scheme for digitally-encoding information
T
6.152J/3.155J Spring Term 2005 Lecture 1 5
Evolution of Transistor Integration
109 10-1
256M 1G
Cost/Function
DRAM 128M
64M
Transistors / Chip
108 Cost / Bit ($, 95) 10-2
Microprocessor 16M
Pentium IV
107 4M Pentium III 10-3
Pentium II
1M Pentium Pro
106 80486 Pentium 10-4
256K
64K
Cost/Bit ($, 95)
105 #1 10-5
80386
80286
#2
16K
104 4K 10-6
8086
1K
103 10-7
8080
4004
102 10-8
10-9
1970 1974 1978 1982 1986 1990 1994 1998 2002 2006
Moore’s Law:
transistor density doubles every 1.5 - 2 years
6.152J/3.155J Spring Term 2005 Lecture 1 6
3
NMOS and PMOS transistors
6.152J/3.155J Spring Term 2005 Lecture 1 7
Vanishingly Small IC Bardeen, Brittain & Shockley- 1947
First IC-1959
ICs-1980
ICs-1999
End of the road?
20XX
• In the last 30 years, typical feature size of
an IC has shrunk dramatically
1 nm
– Bardeen, Brittain & Shockley experiment
≈ 75 µm
– Today’s feature size ≈ 0.18 µm
– Ultimate dimensional limit ≈ 0.05 µm
6.152J/3.155J Spring Term 2005 Lecture 1 8
4
Transistors the size of Virus
Slide provided by
www.intel.com
Professor Martin Schmidt
6.152J/3.155J Spring Term 2005 Lecture 1 9
Future Scaling
6.152J/3.155J Spring Term 2005 Lecture 1 10
5
Intel Microprocessor
(Itanium)
6.152J/3.155J Spring Term 2005 Lecture 1 11
1 Gbit DRAM
(Dynamic Random Access Memory)
Courtesy
Dr. Gary Bronner, IBM
6.152J/3.155J Spring Term 2005 Lecture 1 12
6
Examples of Sensing Technologies
IR Scene Projector
Array
Glass Frit
Solder Pyrex Tube
Micromachined
Sensor Fiber
Mass Flow Sensor Housing
Self aligning
Sensor Die
Glass
Ferrule
Optical
Fiber
Strain
Relief Cable
Opto-Mechanical Resonant Microsensors
TE Array
Differential Thermal
Analysis Sensor
IR scene from MEMS
Micromachined IR array
Courtesy IR bolometer pixel
Dr Cabuz, Honeywell
6.152J/3.155J Spring Term 2005 Lecture 1 13
Examples of Low Power Actuator Technology
The Mesopump PolyMEMS: The
The Micromachined
Linear Actuator
Silicon Microvalve
Unit
Cell
Selective
actuation
Full
extension
Full
actuation
Active surfaces
Smart sampling Micro-Air-Vehicles
Micro-robotics
Flow and pressure control
Tactile displays
Courtesy
Dr Cabuz, Honeywell
6.152J/3.155J Spring Term 2005 Lecture 1 14
7
Digital Micro-mirror Device
www.ti.com
6.152J/3.155J Spring Term 2005 Lecture 1 15
22.2”-Active Matrix Liquid Crystal Display
(AMLCD)
Kai Schleupen, IBM Research
6.152J/3.155J Spring Term 2005 Lecture 1 16
8
Engineering Challenges of the 21st Century:
DECREASING SCALE
• Portable, Distributed Systems
• Manipulation of Small Things
– Drugs
– Biological Cells
– Biological Matter
• DNA Agilent
• Proteins
PbSe Quantum Dots
– Atoms / Molecules
IBM
Bulovic
100n & Bawendi
m
6.152J/3.155J Spring Term 2005 Lecture 1 17
MIT Tiny Technologies
Low Power DSP Transistors
Displays
(Chandrakasan) (delAlamo)
(Akinwande)
Microengines
mm µm nm
~ 1.6 nm radius circle
Microchemical
temanalysis.eps
Plants
(Jensen) Connectors Biosensors Nanotips
(Slocum) (Manalis) (Akinwande)
6.152J/3.155J Spring Term 2005 Lecture 1 Professor Martin Schmidt 18
9
Organization
• Pre-Req
• Total overhaul since two years ago
– Spring ’03 was trial run
• Three lab modules
– IC
– MEMS
– Microfluidics
• Lectures align with labs
6.152J/3.155J Spring Term 2005 Lecture 1 19
Laboratory
• Each session is 4 hours (9-1 or 1-5)
– Tuesday, Thursday, Friday
– Groups A,B,C,D,E,F
• Each lab is 3 sessions
– 2 for processing, 1 for testing
• Three labs
– IC : MOS Capacitor
– MEMS : Silicon Nitride Microcantilever
– Fluids : Micromixer
• Lab report for each lab
6.152J/3.155J Spring Term 2005 Lecture 1 20
10
Lectures
• 13 Topical Lectures
– Vacuum, CVD, Oxidation, Diffusion/Implantation,
Lithography, Etching, Sputtering, Evaporation,
Interconnect, CMP / Electrodeposition
• 3 Lab Overview Lectures
– Given in first week of lab
• 3 Lab Report Lectures
– Given in last week of lab
• 4 Advanced Topic Lectures
– Crystal Growth / Epitaxy, Advanced Si Devices (?),
Nanolithography (?) and ……
6.152J/3.155J Spring Term 2005 Lecture 1 21
Grading
• Quiz #1 and #2 (15% each)
– Each Covers about 6 Topical Lectures
• Take Home (15%)
– Design Problem
– Integrates Lectures
• Lab Reports (10% + 5 % writing /15% / 5%)
– IC Lab – Satisfies CI-M Requirements
• Homework (10%)
• Lab Participation (10%)
– Lab instructor evaluations
6.152J/3.155J Spring Term 2005 Lecture 1 22
11
Policy for Academic Conduct
• Homework
– Collaboration OK, everyone must contribute
– Contributors must be identified
• Take-Home and Quizzes
– No collaboration
• Lab Reports
– Each group shares the same data, but…
– Data reduction, analysis, discussion MUST be
done individually
6.152J/3.155J Spring Term 2005 Lecture 1 23
Books, References
• Lecturer will handout notes
• Copies of chapters when appropriate
• Required book:
– Plummer
• Other references
6.152J/3.155J Spring Term 2005 Lecture 1 24
12
Schedule—First Half
Day Date Lecturer Topic Lab Assignments Due Assignments Out
W 2/2 AIA Overview/Safety/Lab
M 2/7 AIA IC Lab Overview / CIM IC-1:
W 2/9 RCO Vacuum Systems Gate ox / poly HW1 (RCO)
M 2/14 RCO CVD
W 2/16 RCO Oxidation HW1 (RCO) HW2 (RCO)
T 2/22 RCO Diffusion I IC-2:
W 2/23 RCO Diffusion / II Photo/Etch HW2 (RCO) HW3 (RCO)
M 2/28 RCO IC Testing / CIM IC-3: Test Lab 1 Rep
W 3/2 AIA Lithography Test HW3 (RCO) HW4 (AIA)
M 3/7 AIA MEMS Intro MEMs-1
W 3/9 Staff Quiz #1 Backside Lab 1T Rep 3/11
M 3/14 AIA Soft Litho MEMS-2 HW4 (AIA) HW5 (AIA)
W 3/16 AIA Dry Etch KOH etch
M 3/22 Spring Break
W 3/24 Spring Break
6.152J/3.155J Spring Term 2005 Lecture 1 25
Schedule—Second Half
Day Date Lecturer Topic Lab Assignment Due Assignment Out
M 3/28 AIA MEMS Lab Test /CIM MEMS-3 HW5 (AIA) Lab 2 Rep
W 3/30 AIA Dry/Wet Etch Test Lab 1W Rep
M 4/4 AIA Interconnects No Lab
W 4/6 RCO Sputter Deposition Lab 2 Rep 4/8 HW 6 (AIA)
M 4/11 AIA Fluids Lab Overview Fluids-1
W 4/13 RCO Evaporation Photo HW 6 (AIA)
M 4/18 Patriots Day
W 4/20 Staff Quiz #2 HW 7 (RCO)
M 4/25 RCO CMP/ElectroDep Fluids-2
W 4/27 RCO Bulk Crystal Growth Molding HW 7 (RCO) Take Home
M 5/2 AIA Fluids Testing Fluids-3 Lab 3 Rep
W 5/4 RCO Special Topics I Test Take Home
M 5/9 AIA Special Topics II
W 5/11 AIA Special Topics III Lab 3 Rep 5/12
6.152J/3.155J Spring Term 2005 Lecture 1 26
13
Lab Assignments
6.152J/3.155J Spring Term 2005 Lecture 1 27
Safety
• Sleep
– Better safe than sorry
• Be responsible
• Ask questions
• Respect but don’t fear
– No injuries in the history of the class
6.152J/3.155J Spring Term 2005 Lecture 1 28
14