9/7/2018                                                   komal_knn1_sayan_houseVotes
In [4]: # Import plotting modules
                   import matplotlib.pyplot as plt
                   import seaborn as sns
                   import pandas as pd
                   import numpy as np
                   from sklearn import datasets
                   plt.style.use('ggplot')
                     from sklearn.neighbors import KNeighborsClassifier
           In [2]: # Numerical EDA
                   # Predict party affiliation based on votes
                   # made by US House of Representatives Congressmen
                   #https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
                   location = "D:\komal\SIMPLILEARN\MY COURSES\IN PROGRESS\MACHINE LEARNING RECOR
                   DINGS\Jul 28 Sat - Aug 25 Sat\Drive downloads\Machine Learning _ Jul 28 - Aug
                    25 _ Sayan\datasets\house-votes-84.csv"
                   column_names=['party','infants','water','budget','physician',
                                 'salvador','religious','satellite','aid','missile',
                                 'immigration','synfuels','education','superfund',
                                 'crime','duty_free_exports','eaa_rsa']
                   df = pd.read_csv(location,header=None,names=column_names)
                     df.replace({'n':0,'y':1,'?':0},inplace=True)
           In [5]: # Create arrays for the features and the response variable
                   y = df['party'].values
                   X = df.drop('party', axis=1).values
                     # Create a k-NN classifier with 6 neighbors
                     knn = KNeighborsClassifier(n_neighbors=6)
                     # Fit the classifier to the data
                     knn.fit(X,y)
           Out[5]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                              metric_params=None, n_jobs=1, n_neighbors=6, p=2,
                              weights='uniform')
           In [6]: X_new = pd.DataFrame([0.700181,0.620683,0.916841,0.722895,0.272337,
                                         0.660382,0.250985,0.75609,0.784475,0.752666,
                                         0.074864,0.597837,0.647635,0.685137,0.739113,
                                         0.417089]).T
           In [7]: X_new
           Out[7]:
                                0           1          2             3           4        5           6         7
                     0 0.700181 0.620683 0.916841 0.722895 0.272337 0.660382 0.250985 0.75609 0.78447
file:///D:/komal/SIMPLILEARN/MY%20COURSES/IN%20PROGRESS/My%20Codes_ML_DS/codes%20in%20pdf/komal_knn1_sayan_houseVotes.html   1/2
9/7/2018                                                 komal_knn1_sayan_houseVotes
           In [8]: # Predict the labels for the training data X
                   y_pred = knn.predict(X)
                    # Predict and print the label for the new data point X_new
                    new_prediction = knn.predict(X_new)
                    print("Prediction: {}".format(new_prediction))
                    Prediction: ['democrat']
file:///D:/komal/SIMPLILEARN/MY%20COURSES/IN%20PROGRESS/My%20Codes_ML_DS/codes%20in%20pdf/komal_knn1_sayan_houseVotes.html   2/2