9/7/2018 komal_knn1_sayan_houseVotes
In [4]: # Import plotting modules
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from sklearn import datasets
plt.style.use('ggplot')
from sklearn.neighbors import KNeighborsClassifier
In [2]: # Numerical EDA
# Predict party affiliation based on votes
# made by US House of Representatives Congressmen
#https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
location = "D:\komal\SIMPLILEARN\MY COURSES\IN PROGRESS\MACHINE LEARNING RECOR
DINGS\Jul 28 Sat - Aug 25 Sat\Drive downloads\Machine Learning _ Jul 28 - Aug
25 _ Sayan\datasets\house-votes-84.csv"
column_names=['party','infants','water','budget','physician',
'salvador','religious','satellite','aid','missile',
'immigration','synfuels','education','superfund',
'crime','duty_free_exports','eaa_rsa']
df = pd.read_csv(location,header=None,names=column_names)
df.replace({'n':0,'y':1,'?':0},inplace=True)
In [5]: # Create arrays for the features and the response variable
y = df['party'].values
X = df.drop('party', axis=1).values
# Create a k-NN classifier with 6 neighbors
knn = KNeighborsClassifier(n_neighbors=6)
# Fit the classifier to the data
knn.fit(X,y)
Out[5]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=6, p=2,
weights='uniform')
In [6]: X_new = pd.DataFrame([0.700181,0.620683,0.916841,0.722895,0.272337,
0.660382,0.250985,0.75609,0.784475,0.752666,
0.074864,0.597837,0.647635,0.685137,0.739113,
0.417089]).T
In [7]: X_new
Out[7]:
0 1 2 3 4 5 6 7
0 0.700181 0.620683 0.916841 0.722895 0.272337 0.660382 0.250985 0.75609 0.78447
file:///D:/komal/SIMPLILEARN/MY%20COURSES/IN%20PROGRESS/My%20Codes_ML_DS/codes%20in%20pdf/komal_knn1_sayan_houseVotes.html 1/2
9/7/2018 komal_knn1_sayan_houseVotes
In [8]: # Predict the labels for the training data X
y_pred = knn.predict(X)
# Predict and print the label for the new data point X_new
new_prediction = knn.predict(X_new)
print("Prediction: {}".format(new_prediction))
Prediction: ['democrat']
file:///D:/komal/SIMPLILEARN/MY%20COURSES/IN%20PROGRESS/My%20Codes_ML_DS/codes%20in%20pdf/komal_knn1_sayan_houseVotes.html 2/2