UNIT - I
BOOLEAN ALGEBRA AND LOGIC GATES
                   Number System
       S.no   Type          Base   Symbols          Example 27
       1      Binary        2      0,1              11011
       2      Decimal       10     0 to 9           27
       3      Octal         8      0 to 7           33
       4      Hexadecimal   16     0 to 9, A to F   1B
Hexadecimal is used to represent long strings of bits
Like address, instruction, data in a digital system
When human need to do direct communication with computer then they
use octal or hexadecimal numbers as they use less number of digits than
binary
Eg : (111111111111)2 = (7777)8 =( FFF)16
                      Number System
•   Binary digits are called as bits
•   4 bits Nibble,
•   8 bits bytes (used to represent one keyboard character)
•   16/32/64 bits word
     – Hexadecimal = (B65F)16
     – Decimal         = (46,687)10
     – Binary          = (1011011001011111)2
     – Octal           = (133137)8
                             Number System
•   Let the number be as shown below
•   aj : coefficient
•   j : position
•   r : Base
•   aj range from 0 to (r-1)
•    a5 a4 a3 a2 a1 a0. a-1 a-2 a-3
•    Then the decimal equivalent is
•   a5 * r5 + a4 * r4 + a3 * r3 + a2 * r2 + a1 * r1 + a0 * r0 + a-1*r-1 + a-2* r-2 + a-3* r-3
•   Eg: 1011 = 1* 23 + 0 * 22 + 1* 21 + 1 *2
              = 8 + 0 + 2 +1
              = 11
                      Number System
       Decimal numbers
    ◦     Decimal digits: (0,1,2,3,4,5,6,7,8,9)
          7392 =7000+300+90+2
                =7*1000+3*100+9*10+2
                =7*103 + 3*102 +9 *101 +2 *100
    ◦     97654.35 = 9x104 + 7x103 + 6x102 + 5x101 + 4x100 + 3x10-1 + 5x10-2
    ◦     Formal notation -> (97654.35)10
    ◦     Here 10 is the base or radix
                      Number System
   Octal numbers
   Octal digits: (0,1,2,3,4,5,6,7)
    ◦ (4536)8 = 4x83 + 5x82 + 3x81 + 6x80 = (1362)10
    ◦ (465.27)8 = 4x82 + 6x81 + 5x80 + 2x8-1 + 7x8-2
   Octal numbers don’t use digits 8 or 9
 Hexadecimal numbers
 Hexadecimal digits: (0 to 9, A to F)
  (D63FA)16 =13*164 + 6*163 + 3*162 +15*161 +10*160
              = (877562)10
                     Number System
   Binary numbers
   Binary digits (bits): 0 and 1
    ◦ (1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = (11)10
    ◦ (110.10)2 = 1x22 + 1x21 + 0x20 + 1x2-1 + 0x2-2 = (6.5)10
   Groups of eight bits are called a byte
    ◦ (11001001) 2
   Groups of four bits are called a nibble.
    ◦ (1101) 2
Number System
   Why Use Binary Numbers?
   °   Easy to represent 0 and 1 using
       electrical values.
   °   Possible to tolerate noise.
   °   Easy to transmit data
   °   Easy to build binary circuits.
                1     AND Gate
                                        0
                0
                      Number System
            Conversion Between Number Bases
                                              Group 3 bits
                                                                 Octal(base 8)
Decimal(base 10)               Binary(base 2)
                                      Group 4 bits
                                                             Hexadecimal
                                                              (base16)
                Number System
Conversion
Decimal :
       Binary - divide by 2
       Octal - divide by 8
       Hexadecimal - divide by 16
Binary
       Decimal          - Multiply by 2
       Octal - combine 3 bits
       Hexadecimal - combine 4bits
Octal
       Binary – represent each element in 3 bit
       Decimal - Multiply by 8
       Hexadecimal – convert to binary then group by 4 bit
Hexadecimal
       Binary – represent each element in 4 bits
       Decimal – Multiply by 16
       Octal - convert to binary then group by 3 bit
                       Number System
Decimal : Binary   -     Decimal :Octal      -   Decimal : Hexadecimal -
divide by 2              divide by 8             divide by 16
(20)10= (?)2             (48)10= (?)8            (1256)10= (?)16
  2 20
                             8 48                     16   1256
  2 10    0
                             8 6         0            16   78        8
  2 5     0
                                                      16   4         1
  2 2     1              (48)10= (60)8                               4
  2 1     0
                                                 (1256)10= (4E8)16
(20)10= (10100)2
                         Number System
Decimal : Binary                                     Decimal : Hexadecimal -
(20.6875)10= (?)2            Decimal :Octal     -    (1256.513)10= (?)16
                             (48.513)10= (?)8
                                                          16   1256
         2 20
                                  8 48                    16   78     8
         2 10       0
                                  8 6      0              16   4      1
         2 5        0                                                 4
         2 2        1        0.513 *8=4.104=4
         2 1        0        0.104*8 =0.832 =0       0.513*16=8.208 =8
                             0.832*8=6.656 =6        0.208*16=3.328 =3
0.6875*2 =1 .3750 =1         0.656*8=5.248 =5        0.328*16=5.248 =5
0.3750 *2=0.7500 =0                                  0.248*16=3.968 =3
0.7500 * 2=1.5000 =1         (48.513)10=(60.4065)8   0.968*16=15.488= F
0.5000*2 = 1.0000 =1
                                                     (1256.513)10= (4E8.8353F)16
(20.6875)10= (10100.1011)2
                              Number System
Binary: Decimal - Multiply by 2
                                              Binary: Octal   - combine 3 bits
   1       0        1     0     0             (110000)2 = 110 000
   24      23       22    21    20                      = 6 0
   1*16    0*8      1*4   0*2   0*1           (110000)2 = (60)8
   16      0        4     0     0
                                20
(10100)2 = (20)10
                                     Binary: Hexadecimal - combine 4bits
                                     (010011101000)2 = 0100 1110 1000
                                                     = 4      E     8
                                     (010011101000)2 =(4E8)16
                         Number System
Binary: Decimal -
     1      0       1     0     0     1     0     1       1
     24     23      22    21    20    2-1   2-2   2-3     2-4
     1*16   0*8     1*4   0*2   0*1   1/2   1/4   1/8     1/16
     16     0       4     0     0     0.5   0     0.125   0.0625
                                20                        0.6875
(10100.1011)2 = (20.6875)10
                  Number System
Binary: Octal
(110000.1011)2 = 110 000. 101 100
                = 6 0 . 5      4
(110000.1011)2 = (60.54)8
   Binary: Hexadecimal
    (010011101000.1011)2 = 0100 1110 1000. 1011
                          = 4     E    8 . B
    (010011101000)2 =(4E8.B)16
                        Number System
                        Octal: Decimal -      Octal : Hexadecimal -
Octal : Binary -
                        Multiply by 8         convert to binary then
each element in 3 bit
                                              group by 4 bit
        6     110             6         0
                              81        80    (60)8= (110000)2
        0     000                             = 11 0000
                              6*8       0*8   = 3       0
                              48        0
                                              (60)8= (30)16
(60)8= (110000)2                        48
                        (60)8= (48)10
                            Number System
                                 Octal: Decimal
Octal : Binary   -
                                   6      0     4     0     6          5
     6     110                     81     80    8-1   8-2   8-3        8-4
     0     000
     5     101                     6*8    0*8   4/8   0/64 6/512       5/4096
     4     100                     48     0     0.5   0     0.011718   0.00122
                                          48                           0.5129
(60.54)8= (110000.101100)2
                                  (60.4065)8= (48.5129)10
                 Octal : Hexadecimal
                 (60.4065)8= (110000.100000110101)2
                        = 11 0000.1000 0110 1010
                         = 3       0 . 8    6   A
                 (60.4065)8= (30.86A)16
                        Number System
Hexadecimal : Binary
                       Hexadecimal : Decimal   Hexadecimal : Octal - -
- – represent each
                       - Multiply by 16        convert to binary then
element in 4 bits
                                               group by 3 bit
   4     0100
                                               (4E8)16 =
   E     1110           4        E     8
                                                 (010 011     101   000)2
   8     1000           162      161   160     = 2       3      5     0
 (4E8)16 =              4*256    14*   8*1
                                 16            (4E8)16 = (2350)8
(010011101000)2
                        1024     224   8
                                       1256
                       (4E8)16 =(1256)10
                             Number System
                             Hexadecimal : Decimal
Hexadecimal : Binary
    4    0100                             4       E        8      B
     E    1110                            162     161      160    16-1
     8    1000                            4*256 14*16 8*1         11/16
     B    1011                            1024    224      8      0.687
                                                                  5
 (4E8.B)16 =                                               1256   0.687
(010011101000.1011)2                                              5
                             (4E8.B)16 =(1256.6875)10
   Hexadecimal : Octal - -   (4E8.B)16 = (010 011       101 000. 101 100)2
                                       =   2    3          5  0. 5 4
   (4E8.B)16 = (2350.54)8
    Number System
n     2n      n        2n
0    20=1     8     28=256
1    21=2
              9     29=512
2    22=4
              10    210=1024
3    23=8
              11    211=2048
4   24=16
              12    212=4096
5   25=32
              20    220=1M     Mega
6   26=64
              30    230=1G     Giga
7   27=128                     Tera
              40     240=1T
Number System
                    Binary Addition
 Binary addition is very simple.
 This is best shown in an example of adding two binary numbers…
              1    1 1 1 1
                   1                                       carries
                   1
                   1 1 1 0 1                     Augend
           +       1 0 1 1 1                      Addend
           ---------------------
             1 0 1 0 1 0 0                        Sum
                   Binary Subtraction
° We can also perform subtraction (with borrows in p lace of carries).
° Let’s subtract (10111) 2 from (1001101)2…
                  1           10                         borrows
               0 10 10       0 0 10
                                               Minuend
               1    0
                 0 1 1 0 1
      -          1 0 1 1 1                     Subtrahend
      ------------------------
                                                Difference
              1 1 0 1 1 0
                  Binary Multiplication
 Binary multiplication is much the same as decimal multiplication, except
  that the multiplication operations are much simpler…
                              1
                         0 1 1 1                      Multiplicand
            X            1 0 1 0                        Multiplier
            -----------------------
                      0 0 0 0 0
                   1 0 1 1 1
                0 0 0 0 0
             1 0 1 1 1
            -----------------------
             1 1 1 0 0 1 1 0                            Product
               Complements
• Used to simplifying the subtraction
• Simplification lead to simpler and less expensive circuits
  to implement
     Radix / Base                  r     2   10
     Radix complement              r     2   10
     Diminished radix complement   r-1   1   9
             Complements
                                               999999
– 9’s complement                               -546700
   • Subtract each digit from 9
                                               453299
– 10’s complement
   • Subtract each digit from 9 and add 1 to the result
   • Subtract the first non zero from 10 and all others from 9
   • Count the number of digit and subtract from 10n
   999999
  -546700                    9 9 9 10 - -
                                                        1000000
   453299                   -5 4 6 7 0 0
                                                      - 546700
  +      1                   453 3 00
                                                         453300
   453300
                 Complements
– 1’s complement                                1111111
– Find the inverse of the given number          1011000
                                                0100111
–   2’s complement
–   Find the inverse of the given number and add 1 to the result
–   Keep the first non zero as such and then complement the others
–   Count the number of digit and subtract from 2n
      1111111
      1011000               1112 - - -
                                                    10000000
      0100111              -1 0 1 1 0 0 0
                                                     -1011000
       +     1             0 101000
                                                     0101000
      0101000
  Subtraction with r’s Complement
• The subtraction of two positive numbers (M - N), both of base r, may
  be done follows:
   1. Add the minuend M to the r’s complement of the subtrahend N.
   2. Insert the result obtained in step 1 for an end carry:
   (a). If an end carry occurs, discard it.
   (b). If an end carry does not occur, take the r’s complement of the
       number obtained in the step 1 and place a negative sign in front.
     Subtraction with Complement
 • 52532 – 3250
                                  Radix   52532    3250
                                  R-1     47467    96749
                                  R       47468    96750
                            + 52532
                 9’s comp    96749                                              + 52532
                            149281                                  10’s comp      96750
(carry Positive , 9’s comp so add
                                                                                   149282
carry)                            1
                                                  (carry Positive , 10’s comp so
                             49282
                                                  discard carry)
                                                                                   49282
    Subtraction with Complement
• 3250 - 52532
                                    Radix   52532   3250
                                    R-1     47467   96749
                                    R       47468   96750
                         + 03250                                    + 03250
              9’s comp    47467                         10’s comp    47468
                          50717                                      50718
             (No carry , negative                       (No carry , negative
          Find 9’s complement )                     Find 10’s complement )
                         - 49282                                    -49282
     Subtraction with Complement
    • 1010100 – 1000011
                                            Radix        1010100     1000011
                                            R-1          0101011     0111100
                                            R            0101100     0111101
                             + 1010100
                  1’s comp    0111100
                             10010000                                      + 1010100
(carry Positive , 1’s comp so add carry)                        2’s comp    0111101
                                       1
                                                                           10010001
                              0010001
                                           (carry Positive , 2’s comp so discard
                                           carry)
                                                                            0010001
Subtraction with Complement
• 1000011 – 1010100
                               Radix   1010100   1000011
                               R-1     0101011   0111100
                               R       0101100   0111101
                       +1000011                         +1000011
            1’s comp    0101011              2’s comp    0101100
                        1101110
                                                         1101111
             (No carry , negative
          Find 1’s complement )               (No carry , negative
                       -0010001            Find 2’s complement )
                                                        -0010001
             Signed Binary Numbers
 Sign                        Magnitude
 bit
Sign bit : 0 - Negative number
           1 - Positive Number
Number : 10101
  Signed: 10101 = -5
   Unsigned : 10101 = 21
         Signed Binary Numbers
• Representation:
Signed Binary Numbers
               September 5, 2003
                  Signed Binary Numbers
     ■ Arithmetic Addition
signed-magnitude Addition
The addition of two numbers in the signed-magnitude system follows the rules
of ordinary arithmetic.
If the signs are the same, we add the two magnitudes and give the sum the
common sign.
If the signs are different, we subtract the smaller magnitude from the larger
and give the difference the sign of the larger magnitude.
 ♣ The addition of two signed binary numbers with negative numbers
   represented in signed-2's-complement form is obtained from the addition of
   the two numbers, including their sign bits.
 ♣ A carry out of the sign-bit position is discarded.
              Signed Binary Numbers
 ■ Arithmetic Addition
♣ Signed-2’s Complement Addition
♣ The addition of two signed binary numbers with negative numbers
  represented in signed-2's-complement form is obtained from the
  addition of the two numbers, including their sign bits.
♣ A carry out of the sign-bit position is discarded.
♣ If the sign bit is 1 then find the 2’s complement of the number
   Signed Binary Arithmetic Addition
    ■ Arithmetic Subtraction
Negative numbers are changed into positive numbers using r’s complement
(+A) –(+B) = (+A) + (-B)
(+A) –(-B) = (+A) + (+B)
       Signed Binary Arithmetic Addition
   +6      00000110                                        6                13
                                            Signed Mag.    00000110         00001101
           00001101
  +13                                                      -6               -13
  +19      00010011                         2’s comp       11111010         11110011
                               +6            00000110
                              -13            11110011
  -6          11111010
                               -7            11111001              -6             11111010
+13           00001101
                            sign bit 1 so find 2’s comp.          -13             11110011
  +7        100000111
                                                                  -19            111101101
Discard carry, sign bit 0
                                                                               Discard Carry
                                                                sign bit 1 so find 2’s comp.
Complete Post class Assignment