0% found this document useful (0 votes)
240 views6 pages

C H + H o H Oh

The document describes a process where ethylene gas and steam are fed into a reactor at 593.15 K and atmospheric pressure to produce ethanol. The ethanol exits the reactor at 298.15 K. It then asks to calculate the heat transfer associated with the overall process per mole of ethanol produced.

Uploaded by

Aldi Nelfrian
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
240 views6 pages

C H + H o H Oh

The document describes a process where ethylene gas and steam are fed into a reactor at 593.15 K and atmospheric pressure to produce ethanol. The ethanol exits the reactor at 298.15 K. It then asks to calculate the heat transfer associated with the overall process per mole of ethanol produced.

Uploaded by

Aldi Nelfrian
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 6

Ethylene gas and steam at 593.

15 K (320°C) and atmospheric pressure are fed to a


produces ethanol by the reaction:
C2H4 (g) + H2O(g) → C2H5OH(l)
The liquid ethanol exits the process at 298.15 K (25°C). What is the heat transfer a
produced?
Senyawa n A
Etilen 1 1.424
Air 1 3.47
T 298.15

To 593.15

R 8.314

Tou 0.502655

Senyawa ∆H298 Q = ∆HR + ∆H298


Reaktan Etilen 52510
Reaktan Air -241818
Produk Etanol -277690

∆H298 = Produk - Reaktan -88382


spheric pressure are fed to a reaction process as an equimolar mixture. The process

). What is the heat transfer associated with this overall process per mole of ethanol

B C D ∆A ∆B ∆C
1.44E-02 -4.39E-06 0 4.894 0.015843 -0.000004392
1.45E-03 0 1.21E+04

∆� = R ∫𝑇𝑜^𝑇(𝐴+𝐵𝑇+𝐶𝑇^2+𝐷𝑇^(−2) )𝑑𝑇

Q = ∆HR + ∆H298
Q -115652 Joule
-115.6521 kJoule
rocess

hanol

∆D ∆HR
12100 -27270.14

𝐷𝑇^(−2) )𝑑𝑇
A gas mixture of methane and steam at atmospheric pressure and 773
occur:
CH4 + H20 → CO + 3H2 and CO + H20 → C02 + H2
The product stream leaves the reactor at 1123.15 K (850°C). Its comp
yCO2 = 0.0275 , yCO = 0.1725 , yH2O = 0.1725 , yH2 = 0.6275
Determine the quantity of heat added to the reactor per mole of produ

Reaktan y A B C D
CH4 0.2 1.702 0.009081 -0.000002164 0
H2O 0.4 3.47 0.00145 0 12100

∆H298 ∆H298a ∆H298b y ∆H298 total


CH4 -74520 205813 164647 40030.535
H2O -241818
CO -110525 0.1725
CO2 -393509 0.0275
H2 0

produk y A B C D
CO2 0.0275 5.457 0.001045 0 -115700
CO 0.1725 3.376 0.000557 0 -3100
H2O 0.1725 3.47 0.00145 0 12100
H2 0.6275 3.249 0.000422 0 8300

Q 54880.59 J
ospheric pressure and 773.15 K (500°C) is fed to a reactor, where the following reactions

C02 + H2
3.15 K (850°C). Its composition (mole fractions) is:
.1725 , yH2 = 0.6275
reactor per mole of product gas.

CH4 + H20 → CO +
T To R ∆A ∆B ∆C ∆D ∆HR
CH4 + 2H20 → CO2
298.15 773.15 8.314 1.7284 0.002396 -4.33E-07 4840 -11454.92 �=∆�𝑅+ ∆�298 +∆
298.15 773.15 8.314
CH4
∆H298 total M:
B : 0.1725 0.1725
40030.535 S : 0.1725 0.1725

CH4
M:
B : 0.0275 2(0.0275
S : 0.0275 0.055
Reaktan
CH4 = 0.1725 + 0.027
H20 = 0.1725 + 0.172
T To R ∆A ∆B ∆C ∆D ∆HP
1123.15 298.15 8.314 3.36975 0.00064 0 3579 26304.979
1123.15 298.15 8.314
1123.15 298.15 8.314
1123.15 298.15 8.314

HT  HR
 
 H298 
 HP

  298   298   T
HR    ni  CPi dT      ni CPi dT     
 i T R  i T R  i 298

  T   T 
HP    ni  CPi dT      ni CPi dT 
 i 298  P  i 298 P
CH4 + H20 → CO + 3H2 (a)
CH4 + 2H20 → CO2 + 4H2 (b)
�=∆�𝑅+ ∆�298 +∆��

CH4 + H20 → CO + 3H2


M:
B : 0.1725 0.1725 0.1725 0.6275
S : 0.1725 0.1725 0.1725 0.6275

CH4 + 2H20 → CO2 + 4H2


M:
B : 0.0275 2(0.0275) 0.0275 0.6275
S : 0.0275 0.055 0.0275 0.6275
Reaktan
CH4 = 0.1725 + 0.0275 = 0.2
H20 = 0.1725 + 0.1725 + 0.055 = 0.4


98  HP
298   T 
  ni CPi dT       ni CPi dT 
i T R  i 298 R

T 
  ni CPi dT 
i 298 P

You might also like