• BJT Circuits & Limitations
• LTspice
Acnowledgements:
Neamen, Donald: Microelectronics Circuit Analysis and Design, 3rd Edition
6.101 Spring 2017 Lecture 4 1
General Configuration
Common
Emitter
Common
Common Base
Collector
6.101 Spring 2017 Lecture 4 2
Transistor Configurations
TRANSISTOR AMPLIFIER CONFIGURATIONS
+15V +15V +15V
RL RL
R2 R2 R2
+ +
+ +
+ +
+
+
+
+
R1 VOUT + + VOUT
Vin R1 RE
+
Vin RE VOUT Vin R1 RE
- -
- - - -
[a] Common Emitter Amplifier [b] Common Collector [Emitter Follower] Amplifier [c] Common Base Amplifier
6.101 Spring 2017 Lecture 4 3
Base Current – Resistor Divider
IC F
3.7 mA 50
4.0 mA 100
68K
4.2 mA 200
ib 4.3 mA 300
IC=0.6 mA
33K
Make ib small
compared to the
current through R2
6.101 Spring 2017 Lecture 4 4
Commom Emitter – Hybrid π
TRANSISTOR AMPLIFIER CONFIGURATIONS WITH HYBRID- EQUIVALENT CIRCUITS
COMMON EMITTER AMPLIFER
+15V
0 g m r
I CQ
RB
RL IC gm VTH 26mv
VTH
C 2N3904
+ +
IB
Rs
vout v
+
vin
_ _
g m v
v1in
b c v1out oib RL o RL
Av 1
ib r
+
r ib
v in r
Rs
v1out
vout o RL
RB RL
then Av g m RL
+
vin e
o
_ _
gm
6.101 Spring 2017 Lecture 4 5
Common Emitter with Emitter Degeneration
v1out o ib RL o RL
Av 1 ;
v in ib r o 1RE r o 1RE
if r o 1RE ; then Av RL / RE
1
• Input resistance (β+1)RE
v out • Voltage gain reduced by (1+gm RE)
v1in • Voltage gain less dependent on β
(linearity)
6.101 Spring 2017 Lecture 4 6
AC Coupled vs DC Coupled Amplifiers
• AC Coupling
– Advantage: easy cascading
with DC blocking capacitor,
bias stability and stage
independent
– Disadvantage: lot’s of R’s
and C’s, no DC gain, need
large C for low freqency
• DC coupling
– Some gain at DC
– Fewer R’s C’s
6.101 Spring 2017 Lecture 4 7
Gain vs Frequency
6.101 Spring 2017 Lecture 4 8
Cutoff Frequency Analysis
6.101 Spring 2017 Lecture 4 9
Low Pass Filter LPF
log scale
AV (dB)
R 0
V1 C V2 -3dB
slope = -6 dB / octave
slope = -20 dB / decade
log f
1 fHI or f-3dB
V2 j XC j C 1
Av
V1 R j X C R 1 j RC 1 Degrees
j C
1
Av PHASE LAG
sRC 1 0o
-45o
1
High frequency cutoff f -90o
2RC
log f
fHI or f-3dB
6.101 Spring 2017 Lecture 2 10
Cutoff Frequency Analysis
1 1
3db f3db f
2 RC 2 r (C C )
gm
but 0 g m r or f
2 r (C C )
vbe
ib vbe j (C C )
r
g v gm r
h fe m be
ib 1 j r (C C ) 1 j r (C C )
gm
h fe ft h fe 1 or ft
1 j(
f
) 2 r (C C )
f
6.101 Spring 2017 Lecture 4 11
Cutoff Frequency Parameters
q
g m IC
kT
0 h fe (datasheet)
C Cob (datasheet)
gm
fT (transit frequency datasheet)
2 (C C )
gm
C C
2 fT r
6.101 Spring 2017 Lecture 4 12
β
Use max for worst
case cu
6.101 Spring 2017 Lecture 4 13
Miller Effect* – Common Emitter
CM C [1 g m ( RC RL )]
• Neamen, Microlectronics 3rd Edition p 514
6.101 Spring 2017 Lecture 4 14
Miller Effect
RC RC 4k r 2.6k RB 200k
C 4 pF C 0.2 pF gm 38.5ma / V
1
f3db f 15.5MHz
2 r ||RB (C C )
with Miller Effect
CM C [1 gm (RC RL )]
1
f3db f 3.16MHz
2 r ||RB (C CM )
*Neamen, Microlectronics 3rd Edition p 515
6.101 Spring 2017 Lecture 4 15
2N3904
CE configuration,
VCC +15v
6.101 Spring 2017 Lecture 4 16
Common Base Configuration
6.101 Spring 2017 Lecture 4 17
Common Collector (Emitter Follower)
0 g m r
I CQ
gm VTH 26mv
VTH
v1out o 1ib RE o 1 RE
Av 1 ;
v in ib R 's r o 1RE R 's r o 1RE
if r o 1RE ; then Av 1
• Buffer with unity gain
• High input resistance driving low
v1in
v1out output resistance (current gain).
6.101 Spring 2017 Lecture 4 18
Common Collector – Emitter Follower Biasing
+15V
• Β = 100, iB = 7.5ma/100 =‐ 75µa
7.5 mA • Using Thevenin equivalent,
R2
R1
A
RB = R1||R2, VB = 15
2N3904
1
R R2
R1 1.0 k
7.5 mA
VB = IBRB + 0.6V + 7.5V
B
VB = [75 µA x 10k] + 0.6V + 7.5V
VB = 750 mV + 0.6V + 7.5V
+15V VB = 8.9V
7.5 mA [15 R1] ÷ [R1 + R2] = 8.9V
15 R1 = 8.9 x [R1 + R2]
2N3904
IB [15−8.9] R1 = 8.9 R2
RB R1 = 1.44 R2
7.5 V [R1 x R2] ÷ [R1 + R2] = 10 kΩ
VB
[1.44R2 x R2] ÷ [1.44 R2 + R2] = 10kΩ
R2 = 16.9 kΩ (use 16 kΩ)
R1 = 1.44 R2 = 24.4 kΩ (use 24 kΩ)
6.101 Spring 2017 Lecture 4 19
Common Collector – Emitter Follower Biasing
• With R1 = 24kΩ, R2 = 16 kΩ, the current
+15V through the voltage divider is 15 ÷ [40
kΩ] = 375 µA.
7.5 mA
R2 IDivider • The 75 µA base current is 20% of 375 µA.
A
8.1 V 2N3904 • With R1 = 2 kΩ, will need a divider
current that is ~ 4.1 mA. (75 µA is only
R1
~2% of 4.1 mA, which is negligible)
1.0 k
7.5 mA
B
• The voltage drop across R2 will be [15 V –
8.1 V] = 6.9 V; R2 = 1.7 kΩ
• But input impedance will be low = ~890Ω
• Use bootstrapping configuration
= 24.4 kΩ (use 24 kΩ)
6.101 Spring 2017 Lecture 4 20
Low Frequency Hybrid‐ Equation Chart
High gain applications Unity gain, low High gain, better high
Moderate input resistance output resistance frequency response
High output resistance High input resist. Low input resistance
6.101 Spring 2017 Lecture 4 21
Introduction to LTspice
Acknowledgment: LTspice material based in part by
Devon Rosner (6.101 TA), Engineer, Linear Technology
6.101 Spring 2017 Lecture 4 22