0% found this document useful (0 votes)
79 views6 pages

Math Functions Worksheet

1. The document contains examples of functions in the form y=f(x) and their inverse functions f^-1(x). It provides the equations to swap x and y and derive the inverse function. 2. It also includes graphs showing the relationship between the function f(x) and its inverse f^-1(x), with the line y=f(x) above the x-axis and y=f^-1(x) below. 3. There are multiple examples worked through, with functions including linear, quadratic, logarithmic, exponential and other algebraic forms.

Uploaded by

Aanya Ralhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
79 views6 pages

Math Functions Worksheet

1. The document contains examples of functions in the form y=f(x) and their inverse functions f^-1(x). It provides the equations to swap x and y and derive the inverse function. 2. It also includes graphs showing the relationship between the function f(x) and its inverse f^-1(x), with the line y=f(x) above the x-axis and y=f^-1(x) below. 3. There are multiple examples worked through, with functions including linear, quadratic, logarithmic, exponential and other algebraic forms.

Uploaded by

Aanya Ralhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

C3 FUNCTIONS Answers - Worksheet C

1 a y = 10x + 3 b y = 9 + 2x c y = 5 − 6x
swap x = 10y + 3 swap x = 9 + 2y swap x = 5 − 6y
x−3 x−9 5− x
y= y= y=
10 2 6
x−3 x−9 5− x
f −1(x) = , x∈ f −1(x) = , x∈ f −1(x) = , x∈
10 2 6

x+3
d y= e y= 1
3
(2x − 5) f y=8− 3
5
x
4
y+3
swap x = swap x = 1
3
(2y − 5) swap x = 8 − 3
5
y
4
3x + 5 40 − 5 x
y = 4x − 3 y= y=
2 3
3x + 5 40 − 5 x
f −1(x) = 4x − 3, x ∈ f −1(x) = , x∈ f −1(x) = , x∈
2 3

1
2 a y = ln x b y=
x
1
swap x = ln y swap x =
y
1
y = ex y=
x
1
f −1(x) = ex, x ∈ f −1(x) = , x∈ , x≠0
x

4
c y= x d y = 3x − 4
swap x = 4 y swap x = 3y − 4
x+4
y = x4 y=
3
f −1(x) = x4, x ∈ , x > 0 f(0) = −4, f(3) = 5
x+4
f −1(x) = , x ∈ , −4 ≤ x < 5
3

1 1
e y= f y=2+
x−5 x
1 1
swap x = swap x = 2 +
y −5 y
1 1
y= +5 y=
x x−2
1 1
f −1(x) = + 5, x ∈ , x ≠ 0 f −1(x) = , x∈ , x≠2
x x−2

 Solomon Press
C3 FUNCTIONS Answers - Worksheet C page 2

1− x 10
3 a i y = 2x + 1 b i y= c i y=
5 x
1− y 10
swap x = 2y + 1 swap x = swap x =
5 y
x −1 10
y= y = 1 − 5x y=
2 x
x −1 10
f −1 : x → , x∈ f −1 : x → 1 − 5x, x ∈ f −1 : x → , x∈ ,x≠0
2 x
ii y ii y ii y
y = f(x) y = f(x) and
y = f −1(x) y = f −1(x)
y = f −1(x)
y = f(x) O x
O x O x

d i y = x2 e i y = ex f i y = x3
swap x = y2 swap x = ey swap x = y3
y=± x y = ln x y= 3 x
(domain of f ⇒ +) f −1 : x → ln x, x ∈ , x > 0 f −1 : x → 3
x, x∈
−1
f :x→ x , x ∈ , x > 0 ii y y = f(x) ii y y = f(x)
ii y y = f(x)
y = f −1(x)
−1
y = f (x)
O x O x
y = f −1(x)
O x

2x − 4
4 a y = 5x + 1 b y= c y = ex + 2
3
2y − 4
swap x = 5y + 1 swap x = swap x = ey + 2
3
x −1 3x + 4
f −1(x) = y = f −1(x) = y = f −1(x) = y = ln (x − 2)
5 2
x −1 3x + 4
=2 =7−x ln (x − 2) = ln (3x − 8)
5 2
x − 1 = 10 3x + 4 = 14 − 2x x − 2 = 3x − 8
x = 11 x=2 x=3
4
d y= x+2 e y=
x+3
4
swap x = y+2 swap x =
y+3
4
f −1(x) = y = x2 − 2 f −1(x) = y = −3
x
4
x2 − 2 = 3x − 4 − 3 = 5(x + 1)
x
x2 − 3x + 2 = 0 4 − 3x = 5x(x + 1)
(x − 1)(x − 2) = 0 5x2 + 8x − 4 = 0
x = 1, 2 (5x − 2)(x + 2) = 0
x = −2, 25

 Solomon Press
C3 FUNCTIONS Answers - Worksheet C page 3

1
5 a y 6 a g ⇒ y=
2x + 4
1
y = f(x) swap x =
2y + 4
1 1
y = f −1(x) y= 1
2
( − 4) = −2
x 2x
1
O x g −1(x) = − 2, x ∈ , x ≠ 0
2x
range: g −1(x) ∈ , g −1(x) ≠ −2
b 4 − 2x = x b = g(3 − 2x)
4 1 1
x= 3
= =
2(3 − 2 x) + 4 10 − 4x
1
∴ ( 43 , 4
3
) gf(x) = , x∈ , x≠ 5
2
10 − 4x
c f ⇒ y = 3 − 2x
swap x = 3 − 2y
3− x
f −1(x) = y =
2
1 3− x
∴ =
10 − 4x 2
2 = (3 − x)(10 − 4x)
2x2 − 11x + 14 = 0
(2x − 7)(x − 2) = 0
x = 2, 72

1 5
7 a i y = 5x + 2 ii = f( ) iii y = +2
x x
5 5
swap x = 5y + 2 = +2 swap x = +2
x y
x−2 5 5
y= fg : x → + 2, x ∈ , x ≠ 0 y=
5 x x−2
x−2 5
f −1 : x → , x∈ (fg)−1 : x→ ,x∈ ,x≠2
5 x−2

x−2 5
b = +2
5 x
x(x − 2) = 25 + 10x
x2 − 12x − 25 = 0
12 ± 144 + 100
x= =6± 61 = −1.81, 13.81
2

 Solomon Press
C3 FUNCTIONS Answers - Worksheet C page 4

x−2
8 a y= 1
2
ln (4x − 9) b y=
x+5
y−2
swap x = 1
2
ln (4y − 9) swap x =
y+5
4y − 9 = e2x xy + 5x = y − 2
y = 14 (e2x + 9) y(1 − x) = 5x + 2
5x + 2
f −1 : x → 1
4
(e2x + 9), x ∈ y=
1− x
5x + 2
f −1 : x → , x∈ , x≠1
1− x

c y = e0.4x − 2 d y= 3
x5 − 3
swap x = e0.4y − 2 swap x = 3
y5 − 3
0.4y − 2 = ln x y5 − 3 = x3
5
y= 5
2
(2 + ln x) y= x3 + 3
f −1 : x → 5 + 5
2
ln x, x ∈ , x > 0 f −1 : x → 5
x3 + 3 , x ∈

4−x
e y = log10 (2 − 7x) f y=
3x + 2
4− y
swap x = log10 (2 − 7y) swap x =
3y + 2
2 − 7y = 10x 3xy + 2x = 4 − y
y = 17 (2 − 10x) y(3x + 1) = 4 − 2x
4 − 2x
f −1 : x → 1
7
(2 − 10x), x ∈ y=
3x + 1
4 − 2x
f −1 : x → , x ∈ , x ≠ − 13
3x + 1

9 a i y = e2x b i y = x2 + 4
swap x = e2y swap x = y2 + 4
2y = ln x y = ± x−4
y = 12 ln x (domain of f ⇒ +)
f −1 : x → 1
2
ln x, x ∈ , x > 0 f −1 : x → x−4, x ∈ , x > 4
ii y ii y
y = f(x) y = f(x)

y = f −1(x) y = f −1(x)

O x O x

 Solomon Press
C3 FUNCTIONS Answers - Worksheet C page 5

c i y = ln (x − 3) d i y = x2 + 6x + 9 = (x + 3)2
swap x = ln (y − 3) swap x = (y + 3)2
y − 3 = ex y = −3 ± x
y = ex + 3 (domain of f ⇒ +)
f −1 : x → ex + 3, x ∈ f −1 : x → −3 + x , x ∈ , x > 0
ii y y = f −1(x) ii y

y = f(x)
y = f(x)

O x O x
y = f −1(x)

10 a i f(x) = (x + 3)2 − 6 b i f(x) = (x − 2)2 + 1


x < −3 ∴ range: f(x) > −6 x ≥ 2 ∴ range: f(x) ≥ 1
ii y = (x + 3)2 − 6 ii y = (x − 2)2 + 1
swap x = (y + 3)2 − 6 swap x = (y − 2)2 + 1
y = −3 ± x + 6 y = 2 ± x −1
(domain of f ⇒ −) (domain of f ⇒ +)
f −1(x) = −3 − x + 6 , x ∈ , x > −6 f −1(x) = 2 + x − 1 , x ∈ , x ≥ 1

5 2 3 2
c i f(x) = (x + 2
) − 33
4
d i f(x) = (x − 2
) + 11
4

x < − 52 ∴ range: f(x) > −8 14 2 < x < 4, f(2) = 3, f(4) = 9


5 2
ii y = (x + 2
) − 33
4
∴ range: 3 < f(x) < 9
5 2 3 2
swap x = (y + 2
) − 33
4
ii y = (x − 2
) + 11
4
3 2
y = − 52 ± x + 334 swap x = (y − 2
) + 11
4

(domain of f ⇒ −) y= 3
2
± x − 114
f −1(x) = − 52 − x + 334 , x ∈ , x > −8 14 (domain of f ⇒ +)
f −1(x) = 3
2
+ x − 114 , x ∈ , 3 < x < 9

e i f(x) = 8 − 2x − x2 = 9 − (x + 1)2 f i f(x) = −5(x2 − 4x) = 20 − 5(x − 2)2


x ≥ −1 ∴ range: f(x) ≤ 9 x > 2 ∴ range: f(x) < 20
ii y = 9 − (x + 1)2 ii y = 20 − 5(x − 2)2
swap x = 9 − (y + 1)2 swap x = 20 − 5(y − 2)2
20 − x
y = −1 ± 9− x y=2±
5
(domain of f ⇒ +) (domain of f ⇒ +)
20 − x
f −1(x) = −1 + 9− x , x ∈ , x ≤ 9 f −1(x) = 2 + , x ∈ , x < 20
5

 Solomon Press
C3 FUNCTIONS Answers - Worksheet C page 6

x+3
11 a y= 1
3
(2x − 5) b y = ln c y = x2 − 4
5
y+3
swap x = 1
3
(2y − 5) swap x = ln swap x = y2 − 4
5
3x + 5
f −1(x) = y = f −1(x) = y = 5ex − 3 y= ± x+4
2
3x + 5 4
∴ = ∴ 5ex − 3 = 10 − 6e−x (domain of f ⇒ +)
2 2− x
(3x + 5)(2 − x) = 8 5e2x − 13ex + 6 = 0 f −1(x) = x+4
2 x x x+6
3x − x − 2 = 0 (5e − 3)(e − 2) = 0 ∴ x+4 =
3
( x + 6)2
(3x + 2)(x − 1) = 0 ex = 3
5
,2 x+4=
9
x = − 23 , 1 x = ln 3
5
, ln 2 9(x + 4) = x2 + 12x + 36
x = −0.511, 0.693 (3sf) x2 + 3x = 0
x(x + 3) = 0
x = −3, 0

12 a −2 13 a y = x2 − 3x = (x − 3 2
2
) − 9
4
6+b 3 2
b =4 swap x = (y − 2
) − 9
4
6−2
6 + b = 16 y= 3
2
± x + 94
b = 10 (domain of f ⇒ +)
x + 10
c y= f −1 : x → 3
2
+ x + 94 , x ∈ , x ≥ − 94
x−2
y + 10
swap x = b y
y−2
xy − 2x = y + 10 y = f −1(x)
y(x − 1) = 2x + 10
2 x + 10
y= y = f(x)
x −1
2 x + 10
f −1(x) = , x∈ , x≠1 O x
x −1

c g ⇒ y = 2x + 3
swap x = 2y + 3
x−3
g −1(x) = y =
2
g −1(12) = 9
2

f −1g−1(12) = f −1( 92 )
3 27
= 2
+ 4
3 3
= 2
+ 2
3
3
= 2
(1 + 3)
∴ a= 1 12

 Solomon Press

You might also like