0% found this document useful (0 votes)
97 views3 pages

Bks MaaSL 0306 ws00 Xxaann

Uploaded by

Aanya Ralhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
97 views3 pages

Bks MaaSL 0306 ws00 Xxaann

Uploaded by

Aanya Ralhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Additional exercise

3.6 The quadratic formula and the


discriminant
1 Use the quadratic formula to find the roots of each equation.

a 4x2  x  2  0 b 2x2  3x  1  0 c x2  4x  2  0

d 5x2  x  2  0 e 3x  x2  5 f 2x2  3x  2

g x  x  2  6 x  5 h x 3x  4  1 i 5x2  9x  10  2x  4

2 Identify which of the equation(s) in question 1 could be solved by factorization and then show
the factorization.

5  57
3 The zeros of the function f  x   2x2  5x  c , where c is a real number, are
4
5  57
and . Find c.
4

4 Find the value of the discriminant and then state the nature of the roots of each equation.

a 2x2  x  4  0 b 3x2  4x  4  0 c 4x2  12x  9  0

d 3x  5  x2 e 2x2  8x  5  0 f 5x2  2x  3

5 Identify which of the equation(s) in question 4 have rational roots. Justify your answer.

6 Find the value(s) of k such that the equation 2x2  4x  k  0 has two distinct real roots.

7 Find the value(s)of p such that the graph of f  x   x2  2px  3p lies on the x -axis.

8 Find the value(s)of p such that the vertex of the graph of f  x   2x2  4x  m  1 has
no x -intercepts.

9 Solve each inequality.

a x2  25  0 b 2x2  x  6  0 c x2  2x  5

10 Find the value(s) of k that make the statement true.

a x2  3kx  1  0 has two distinct real roots

b the graph of f  x   kx2  2kx  3  2k has no x -intercepts

© Oxford University Press 2019 Additional exercise 1


Additional exercise

Answers

  1   1  4  4  2


2
2 1  33
1 a 4x  x  2  0  x  
2  4 8

3  32  4 2 1 3  1 1
b 2 x 2  3x  1  0  x    1, 
2 2  4 2

  4   4  4 1 2


2
4 8
c x 2  4x  2  0  x   or 2  2
2 1 2

  1   1  4 5 2


2
1  39
d 5x 2  x  2  0  x    no real roots
2 5 10

3  32  4  1 5 3  29 3  29
e 3x  x 2  5   x 2  3x  5  0  x   or
2  1 2 2

3  32  4 2  2 3  5 1
f 2x 2  3x  2  2x 2  3x  2  0  x    2,
2 2  4 2

  8   8  4 1 5


2
8  44
g x  x  2  6 x  5  x 2  8x  5  0  x   or 4  11
2 1 2

4  42  4 3  1 4  28 2  7
h x  3x  4   1  3x 2  4 x  1  0  x   or
2  3 6 3

  11   11  4 5 6 


2
11  1 6
i 5x 2  9x  10  2x  4  5x 2  11x  6  0  x    1,
2 5 10 5

1
2 b 2x2  3x  1  0  2x  1  x  1  0  x   , 1
2

1
f 2x2  3x  2  2x 2  3x  2  0  2x  1  x  2  0  x  , 2
2
6
i 5x2  9x  10  2x  4  5x2  11x  6  0  5x  6   x  1  0  x  ,1
5

  5   5  4 2  c 


2
5  25  8c
3 2 x 2  5x  c  0  
2 2  4
5  25  8c 5  57
  25  8c  57  8c  32  c  4
4 4

4 a   12  4 2 4  31 ; no real roots

b   42  4 3 4  64 ; two distinct real roots

c   122  4  49  0 ; two equal real roots (one repeated root)

d 3x  5  x2   x2  3x  5  0;   32  4  15  29 ; two distinct real roots

   8  4 2 5  24 ; two distinct real roots


2
e

   2  4 5 3  56 ; no real roots


2
f

5 b 3x2  4x  4  0 has rational roots because 64 is a perfect square.

c 4x2  19x  9  0 has rational roots because 0 is a perfect square.

© Oxford University Press 2019 2


Additional exercise

6 42  4 2 k   0  16  8k  0  8k  16  k  2

7 vertex on x -axis  x2  2px  3p  0 has one repeated real root, so   0 .

 2p  4 13p  0  4p2  12p  0  4p  p  3  0  p  0,3


2

8 no x -intercepts  2x2  4x  m  1  2x2  4x   m  1  0 has no real roots, so   0 .

42  4 2 m  1  0  16  8m  8  0  8m  24  m  3

9 a x2  25  0   x  5 x  5  0  x  5,5

so x2  25  0  5  x  5

3
b 2 x 2  x  6  0   2 x  3  x  2   0  x   ,2
2

3
so 2x2  x  6  0  x   or x  2
2

2  22  4  1 5
c  x 2  2x  5  0  x  1 6
2  1

so x2  2x  5  1  6  x  1  6

2 2
 3k   4 1 1  0  9k 2  4  0  3k  2 3k  2  0  k  
2
10 a or k 
3 3

b no x -intercepts  kx2  2kx  3  2k   0 has no real roots

 2k   4  k  3  2k   0  4k 2  12k  8k 2  0  4k  k  3  0  k  3 or k  0


2

© Oxford University Press 2019 3

You might also like