MTBF s MTTF MTTR MTBF JRHI dt
MTBF
t R e
At
MTTF
A
MTTFtMTTR
Fiabilitatea r din n
oprobabilitatea sie fundiouere exact r blocuri
n r
Pu r Care Rr e r
o
fiabilitatea structurii
n k
Rhu
R
EE r
Rata defedgeueetoo
l
leet
maze M 4
e PLA conditionalde loenieneutub B
P CA1B PLA B
P B t
gets dRd Iet
Jfl 3 dz
O
steady state
data admitLex ECx3 fcx dx
Structure series
U
o
Rs Ct M Ri Ct
n is s
Is die
isa
Qs r Rs Ctl I TI e Qi Ct
e structure
parald
a
Rp I L l Ri I I e Ri U R2 Li Ru
0 MTBtp
la module identice
MT too
o
Btp
Pentru giabilitateasisteenelor wedecomposable
modahee problema function a
se rea be eaten I
ape anoduene
problem wefunctionaka
teaface cu aan
SP
Reteneare beinodaea as
K
Rsp y Ce RM
a
o Ross e f e Ryk
PS
Structure on votare
wajoritarakanpi ice r
i
ca rv
Structure cu rue element dereferred
k RBet 1B
Rs t
tr z k dos
RRCt
MTBts
or MTBFg MTBER
Cee k e eleeneute de reteroa
it
see
g
I e
k
MTBts E MTBF
is e
s module identice
j 1
Rs le He t e
te
Gies
YI
o MTBF K MTBF
a Structure on backup actui
module ideutiie
tht at
Rs Ct s fee e e e
a MTBF t
zµ
o
Lanfuri Markov la taupe discrete
A PI P II Mattie deprobabilitate
pmpm pure
o FaCtl o A 1Pa t at
a
steady state
Cg
g gaT A qi
o o e
o Procese Markov tulip de obserreafie continuer
o ti
j
densitate
probabilitate detraneyte
PE X Ct et Sj I Ct se f
dig ludi at
Xu Xue E
is y
o P Ct Pct A