ASSIGNMENT OF PROCESS
HEAT TRANSFER
Submitted to :
Muhammad Sulaiman
Submitted by:
M Shahbaz 2014-CH-220
Aitazaz Ahsan Noor 2014-CH-221
Hussain Kazmi 2014-CH-219
Problem 7.10
Given data:
Mass flow rate of iso-butane =m’=78359lb/hr
No of tubes =nT=178
Shell passes = 1
Tube passes = 4
Length of tubes=l=12ft
Solution:
Physical properties of solution :
Specific heat capacity of iso-butane=cP=0.689 Btu/lb.0F
Specific heat capacity of n-butane=cP=0.631 Btu/lb.0F
Viscosity=µn-butanne=µiso-butane=0.2904lb/ft.hr
Thermal conductivity =kn-butane=0.01203 Btu/hr.ft2.oF/ft
Thermal conductivity =kiso-butane=0.0139 Btu/hr.ft2.oF/ft
Heat Duty:
We know that
Q0t=m’.cP.∆ T
Q0t=23×0.689×78359
Q0t=1241755.1 But/hr
m’n-butane= 1241755.1/23×0.2904
m’n-butane= 185913.7472lb/hr
LMTD:
LMTD=(T1-t2)-(T2-t1)/ln((T1-t2)/(T2-t1))
LMTD=(203-177)-(180-154)/ln(49/3)
LMTD=0
As LMTD=0 which means this heat exchanger is possible but infinite area would be require for
the transformation of heat . But here we are given with the data so we are going to calculate
pressure drops and dirt factor.
Tube side calculations:
As we know that
Re=G×Di/µ
As,
G=m’/aT
While aT=No. of tubes×a1/np
aT= 178×0.268/4×144=0.0828ft2
And
G=78359/0.0828=946364.73 lb/hr.ft 2
Re=Di × G/µ
=0.584×946364.73/12×0.2904
Re= 1903157.7
Here we don’t need to calculate L/D because its huge Re .
From graph,
JH=1000
We know that
JH=(hi×di/k)(cP×µ/k)-1/3(µ/µW)-0.14
hi=(1000×0.01323×12/0.584)(0.2904×0.689/0.584) 1/3
hi=190.2 Btu/hr.ft2.oF
hio=di×hi/do=0.584×190.2/0.75=148.1024 Btu/hr.ft 2.oF
Tube side pressure drop:
∆Pt = fG2ln/5.22×1010×ds∅ t
s=0.6
f=0.00009 ft2/in2
∆Pt = 0.00009×(946364.73)2×12×4/(5.22×1010×0.6×1×0.04867)
∆Pt = 2.5381 psi
Now,
∆PT=∆Pt.∆Pr ------> (1)
∆Pr= (4n/s)(V2/2g)
∆Pr= 16/0.6×1
∆Pr= 26.66psi
∆PT= 2.5381+26.66=29.1981psi
It’s very huge pressure drop so this kind of tubes is not feasible for shell and tube heat
exchanger.
Clean overall coefficient:
Uc=hi×hio/hi+hio
=190.2×148.10/190.2+148.10
=669.131N
And
Ud=Q/A×∆ T
Ad=N×l×π
=178×12×.1963= 419.29 ft2
Now
m.Cp∆ T = Q
Q=23×0.689×78359
=1241755.1 BTU/hr
Ud=α
So,
Rd=1/Ud-1/Uc =1/α-1/669.131 = 0
Shell side calculation:
As = iD×c’×B/Pt
C’ = Pt-do=1-0.75= 0.25
As = 17.25×0.25×6/1×144
= 0.1797 ft2
G = m/as
=185913.74/0.1797
=1034578.45
De = 4×(1/2Pt×0.86Pt-1/2×πdo2/4)/1/2πdo
= 0.711 in
We know that
Re = De×G/µ
= 0.05925×1034578.45/0.2904
Re = 211083.93
Shell side Pressure drop:
∆Ps = fGi×Di(N+1)/5.22×1010De×S×φs
f= .00119 S= 0.6 N+1 = l/B
N+1 = 12×12/6
= 24
Now
∆Ps = 0.00119×1034578.45×17.25×24×12/5.22×10 10×0.711×0.6
∆Ps = 0.00033 Psia