0% found this document useful (0 votes)
65 views10 pages

Complex Mathematical Equations Analysis

The document describes a causal system where the output z is a function of the input x. It involves poles, zeros, the region of convergence (ROC), and the Laplace transform. The key points are: 1) The system is causal and stable with the ROC being z > 1/4. 2) The poles are located at z = 1/2, 1/4 and the zeros are at z = -1, excluding the point z = 0. 3) The Laplace transform of the output is a rational function of the input involving the poles and zeros.

Uploaded by

Junaid M Faisal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
65 views10 pages

Complex Mathematical Equations Analysis

The document describes a causal system where the output z is a function of the input x. It involves poles, zeros, the region of convergence (ROC), and the Laplace transform. The key points are: 1) The system is causal and stable with the ROC being z > 1/4. 2) The poles are located at z = 1/2, 1/4 and the zeros are at z = -1, excluding the point z = 0. 3) The Laplace transform of the output is a rational function of the input involving the poles and zeros.

Uploaded by

Junaid M Faisal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

z rana fo m of o CTou

Rd
x] sCn -

h -0

S( = ,n -o

O,t o
RA S(o) z

ROC fs6 enbeyez-plane.

C= , nz o

n =0

|-2 -
cOs(, n)«["J
ntn) Ca w )u]
te î enponenttad Po
w
Oon
Cos ( o

(n)C 3

S -Swo"z
ee
.
l2
.n
J
+ ee

e h =

) n =
(
Ob
e

n=0

. 1 ++
e
- z -
(1- )1- -
-Swo
Y. e
2-
D(1-
-
te
- 2

-o
Sooe Z

Juo
, +e

1- - JOo- 2
of
s
2 2 cas wo)
2

2 cor
T-zcas (o)
-'C 2 Cos o)

- cOR

2 cos wo
Cos w +z
cPenslon

]
[-]-[
heorcrm
ublon
vo
ton
h-1
] - x]A[
vohehuovem
gntta

heYe J s cas
o- X27
na Vann Hheor em

tamal amd +Ae R o c


4 aunl on tele outstde
Outstde
o poles
xT a een crcle t t n

LE C x
z
(4)(
nte

( Z E (
O

Y z-Va4
z-/4

z a
2-2
C-/4) -<(z-
To ROC
z 1/2 z/4-F -pa
m C)
fols z = /, , /a (oS,o 13
6 is a cavsoal s t e
Cany al Re (
hoC is z > /, Clzl
*geestpef
d rons rC
VA Roc (ouhi

S X-homsown ROC
AAL z

-n- z<
NAALz exapt
at -o(iem
A Z ez cept
at =
tt m
-nn - -1

n - - -az
nauC) az
(T-A

- na u n -
C-a
Cos
cas o)z
(2 Cos wo) z
-2

-1

- Cos w,)z
2

n d 4R initi - n n l vohes
z ROC z >
xC 5 -

z-0

xC C7-xC

xC
Az-5z - I
x C
Co
t - 5 z-
(3-/
oll
3nal
o Cz-) () x

4(5 -/)
4Cx-DCx-/

-1
-Vs
Anvese z-hamstom
Restdual metRed
PaLbal Rachon metRod
aubtal racheon uthod
-1z- -2 RoC a 4
C-Cx -
3d ]
1x-22
Cx- -
A
z- 2
(- A(z
1z 2 D i u éLot stoles b z
1z23
x( z-C )
zez-A
B C
A + -3
z-4

1 7 - 3 3 = A C z - ( z - J +B ( C - +
cCC
B E D =1 < 3 - 2 3

AC -2 3 B
= 21-23
+12 A -23 =2
=-23
3 B 28
A

+D=1x4-23
AC S

C 4
-22/12 7+_4
Z
T-3
z
2C) =29

A(= 3 8 + 2 su ()+Y44
3
2

let Cansa

You might also like