0% found this document useful (0 votes)
59 views24 pages

R IS IN G: Are Otope Vestigation at SI Spectroscopy at Relativistic Energies

This document summarizes an investigation into rare isotope spectroscopy using relativistic beams at GSI. Key points include: - Studying unstable nuclei along the N=Z line and in the Ca, Ti, Cr isotope chains to explore new shell structure with extreme neutron-proton ratios. - Using relativistic Coulomb excitation with the FRS and RISING setup to access higher excitation energies and selectively excite single steps. - Measuring lifetimes in the neutron-rich Cr isotopes 56Cr and 58Cr via Doppler shift and plunger techniques to probe shell evolution. - Results provide evidence for modified shell structure and possible subshell gaps in neutron-rich Ca, Ti, Cr isotopes compared

Uploaded by

Joe Joe
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
59 views24 pages

R IS IN G: Are Otope Vestigation at SI Spectroscopy at Relativistic Energies

This document summarizes an investigation into rare isotope spectroscopy using relativistic beams at GSI. Key points include: - Studying unstable nuclei along the N=Z line and in the Ca, Ti, Cr isotope chains to explore new shell structure with extreme neutron-proton ratios. - Using relativistic Coulomb excitation with the FRS and RISING setup to access higher excitation energies and selectively excite single steps. - Measuring lifetimes in the neutron-rich Cr isotopes 56Cr and 58Cr via Doppler shift and plunger techniques to probe shell evolution. - Results provide evidence for modified shell structure and possible subshell gaps in neutron-rich Ca, Ti, Cr isotopes compared

Uploaded by

Joe Joe
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

Rare ISotope INvestigation at GSI

Spectroscopy at relativistic energies

‰ Physics case & overview


‰ Spectrometer
‰ Relativistic Coulomb excitation
example Cr isotopes
‰ Summary
P. Reiter, University of Cologne
Gamma-Ray Spectroscopy in Europe:
Present and Future Challenges
ECT Trento, May 8 – 12, 2006
Physics program - Nuclei of interest
134Ce, 136Nd 104-112Sn

69Br 132Sn

53Ni

68Ni

36Ca
58Cr

¾ Shell structure of unstable magic nuclei


N=Z ¾ Symmetry along the N=Z line
32,34Mg ¾ Collective modes, E1 strength distribution
¾ Shapes and shape coexistence
New Shell Structure at N>>Z
Mirror symmetry of (sub)shell closures

Modified shell structure in neutron-rich


Ca-, Ti-, Cr-Isotopes due to weaker
πf7/2 –νf5/2 monopole pairing interactions?

(sub)shell gaps at N=32 and N=34?

Z=14(16) shell stabilisation and Z=12 shell


quenching in N=20 isotones.
(sub)shell gaps at N=14,16 for Ca isotopes?
New Shell Structure at N>>Z
Relativistic Coulex in N=28-34 Nuclei

• Large scale shell modell calculations


- GXPF1, GXPF1A
M.Honma et al,
Phys. Rev. C65(2002)061301

- KB3G
E.Caurier et al,
Eur.Phys.J. A 15, 145 (2002)

• Transition matrix elements


- B(E2) in 52,54,56Ti (MSU)
- B(E2) in 54,56,58Cr (GSI)
Relativistic beams at GSI

accelerators:
UNILAC (injector) - E<15 AMeV
SIS - E < 1 AGeV

beams:
All ion species up to 238U
Currents:
238U - 2* 108 pps
medium mass nuclei- 109 pps
High resolution γ-spectroscopy at the FRS
FRS provides secondary radioactive ion beams:
• fragmentation and fission of primary beams
• high secondary beam energies: 100 – 500 MeV/u
• fully stripped ions

FRS

RISING
γ-spectroscopy at relativistic energies
High cross sections
• Coulomb excitation
• Secondary fragmentation

Thick targets

Lorentz boost of γ-rays


• Doppler shift
• Gain in geometrical efficiency
• Doppler broadening
Doppler broadening

Atomic background, a limiting factor Detector opening


• X-rays from target atoms
ΔEγ0/Eγ0 [%] angle Δθ=3°
• Radiative electron capture
β=0.57
• Primary Bremsstrahlung
β=0.43
• Secondary Bremsstrahlung β=0.11
• σ (atomic) ~ 10000 * σ (nuclear)

High energetic reactions θlab [deg]


Coulomb excitation at relativistic energies
• Sommerfeld Parameter η>>1

• adiabaticity parameter ξ
ωph ΔE ΔE b γβhc
ξ≡ ≡ τcoll = for ξ = 1 ΔE max =
ωcoll h hc γβ b min
- higher excitation energies at relativistic energies
- access to GDR range 10 - 20 MeV

• excitation strength parameter χ


(ππλ) Vλ(b) ⋅ τ coll Z t e f M(π(πλ i
χ (b) ≈ ≈
h hγvb λ
- only single step excitation at relativistic energies
EUROBALL-Cluster array

15 EUROBALL Ring Angle Distance Resolution Efficiency


[deg] [mm] [%] [%]
Cluster detectors 1 15.9 700 1.00 1.00
without ACS 2 33.0 700 1.82 0.91
105 Ge crystals 3 36.0 700 1.93 0.89
Total: 1.56 2.81
H.J. Wollersheim et al.; NIM A 537 (2005) 637
RISING experimental setup

Ge Cluster detectors
Target chamber

CATE
beam

BaF2
HECTOR
detectors
Ge MINIBALL detectors
RI beam: fragment identification and tracking
Primary beam 86Kr, 480 MeV/u, 109 p/sec
56Cr
Secondary beams, 136 MeV/u:
• 54Cr: 4 x 103 part./s, 22 h, 45% 54Cr

• 56Cr: 1 x 103 part./s, 20 h, 35% 56Cr Z


• 58Cr: 3 x 102 part./s, 55 h, 25% 58Cr

Fragment identification
A/Q

Tracking before target Multiwire extrapolation to target

mm
MW1 MW2 Target CATE
Si1 Si2 CsI

Θp
Θγ
γ
mm
CAlorimeter TElescope CATE
Particle Identification and Tracking after Target
R. Lozeva et al, NIM B, 204 (2003) 678

E
• CsI detectors
∆E
• Z identification
• 0.3 mm thick Si detectors
• Z identification
• Position sensitive

56Cr + 197Au Tracking after target

∆E Particle identification Y

56Cr
(Coulomb excitation)
X

E
Tracking: - Doppler correction
- scattering angle
• velocity v/c from TOF (event-by-event) MW1 MW2 Target CATE
• tracking of ions: γ-ray emission angle Si1 Si2 CsI

Θp
Ö γ-ray energy resolution Θγ
Ö scattering angle γ
Limit in scattering
angles 0.6o to 2.8o
200 corresponds to
30 keV
impact parameters:
40 to 10 fm

Counts
Counts

16 keV

835 scattering angle (deg)


γ-ray energy (keV)
New Shell Structure at N>>Z
Relativistic Coulex in N=28-34 Nuclei

A. Bürger et al., Phys. Lett B 622, 29 (2005)


Comparison with 52,54,56Ti

D.-C. Dinca et al., Phys Rev. C 041302(R) (2005)


Stable beam lifetime measurement in 56Cr
Doppler shift:
Recoil Distance Doppler Shift
ΔE=E0· v/c ·cos(θ)
Plunger Method
detector E0
48Ca
E‘
target
stopper
ΔE
11B beam
v1
θ
v2=0
Set up: Cologne plunger
x ; t=x/v1 Foreward: EUROBALL Cluster
48Ca(11B,p2n)56Cr Backward: 5 Ge-detector
@ 30 MeV
Cologne tandem accelerator

Potential difficulties:
Feeding: observed; unobserved γγ coincidences with plunger
Deorientation, …. Differential Decay Curve method

D. E. Appelbe et al. Phys. Rev. C 67, 034309 (2003)


stable beam, lifetime measurement in 56Cr
Differential Decay Curve method

Eγ RISING Plunger B(E2)


[keV] B(E2) [Wu] B(E2) [Wu] [Wu]

54Cr 835 Normali- 14.6(6)


sation

56Cr 1006 8.7 (3.0) ---


11.1 (3)
58Cr 880 14.3 (4.2) ---
- RISING result confirmed ~ 3 % error
- 58,60,62...Cr radioactive beams or
M. Seidlitz et al. deep inelastic reactions
Triaxiality in even-even core nuclei of N=75 odd-odd isotones

2+1 → 0+ 134Ce
B(E2)
2+2
(2+2 → 2+1) [W.U.]
557
2+1 53±5
(2+2 → 0+) 966
409 < 12 *
0+
< 206 *

2+1 → 0+ 136Nd
B(E2)
2+2
2+2 → 2+1 [W.U.]
489
2+1 862 90±11
2+2 → 0+
374 12±3 *
0+
251±95 *

T. Saito et al. next contribution


AGATA performance in
FAIR experiments
RISING AGATA-15
(2004/5) ~2010

Efficiency : 1-3% 10.5%


FWHM: 25 keV ~7 keV
at v/c~0.5, multiplicity: 1-5, target-detector distance: 15 cm

Much increased sensitivity

Angular distribution and polarisation measurements,


γγ-coincidence measurements, g-factors
background suppression through determination of source
AGATA vs. RISING Coulomb excitation of 54Cr
RISING AGATA-15
exp. data simulation

Counts/4 keV
Counts/4 keV

390 cts 830 cts


σ: 6.7 keV σ: 3.1 keV

RISING AGATA-180
simulation simulation
Counts/4keV
Counts/4 keV

400 cts 4950 cts


σ: 8.4 keV σ: 4.9 keV

Calculation by A. Bürger, W. Korten


Summary
Coulomb excitation results from fast beam RISING
¾ Coulex at 130-150 MeV established
¾ Coulomb excitation of 2+1 in 108,112Sn
A. Banu et al., Phys. Rev. C 72, 061305(R) (2005)
¾ Coulomb excitation of 2+1 in 54,56,58Cr
A. Bürger et al., Phys. Lett B 622, 29 (2005)
¾ RDDS results confirms B(E2) of 56Cr
¾ Collective modes and E1 strength distribution: 68Ni
talk by F. Camera
¾ Coulomb excitation of 2+1 and 2+2 in 134Ce, 136Nd
talk by T. Saito

Future challenges
9 fast beam RISING
9 AGATA demonstrator
RISING collaboration

Local FRS & RISING group:


A. Banu, T. Beck, F. Becker, P. Bednarczyk, K.-H. Behr, P. Doornenbal,
H. Geissel, J. Gerl, M. Gorska, J. Grebosz, M. Hellström, M. Kavatsyuk,
O. Kavatsyuk, I. Kojouharov, N. Kurz, R. Lozeva, S. Mandal, N. Saito, T. Saito,
H. Schaffner, H. Weick, M. Winkler, H.J. Wollersheim
GSI Darmstadt, Germany
Coulomb excitation cross section

GSI

GANIL, NSCL, RIKEN

H. Scheit, thesis (1998)


Coulomb excitation parameters

Coulomb excitation: 56Cr → 197Au

E/A 5 60 130 500


AMeV AMeV AMeV AMeV
Adiabaticity 0.6 0.17 0.11 0.05
parameter
Emax 1.6 5.7 8.6 18.6
MeV MeV MeV MeV
Strenght 0.15 0.11 0.07
parameter*

* For 2+ excitation B(E2) =300 e2fm4

You might also like