UV-Vis spectroscopy
Basic theory
Dr. Davide Ferri
Empa, Lab. for Solid State Chemistry and Catalysis
044 823 46 09
davide.ferri@empa.ch
Importance of UV-Vis in catalysis
IR
Raman
NMR
XAFS
UV-Vis
EPR
0 200 400 600 800 1000 1200
Number of publications
Number of publications containing in situ, catalysis, and respective method
Source: ISI Web of Knowledge (Sept. 2008)
The electromagnetic spectrum
VISIBLE ULTRAVIOLET
1015-1016 Hz 1016-1017 Hz
200
source: Andor.com
The ‘energy’ unit
Typically, the wavelength (nm) is used
the distance over which the wave's shape repeats
x nm = 10’000’000 / x cm–1
y cm–1 = 10’000’000 / y nm
Is UV-vis spectroscopy popular?
pros
economic
non-invasive (fiber optics allowed)
versatile (e.g. solid, liquid, gas)
extremely sensitive (concentration)
cons
Broad signals (resolution)
Time resolution (S/N)
What is UV-vis spectroscopy?
Use of ultraviolet and visible radiation
Electron excitation to excited electronic level (electronic
transitions)
Identifies functional groups (-(C=C)n-, -C=O, -C=N, etc.)
Access to molecular structure and oxidation state
Electronic transitions
hν
Organic molecule Organic molecule
anti-bonding anti-bonding
σ*
empty
π*
lone pairs e e n e e
occupied e π e
bonding bonding
e σ e
n→π* n→σ* π→π* σ→σ* n→π* n→σ* π→π* σ→σ*
E= hν λ= c/ν
high e- jump → high E
high E → high ν high ν → low λ
Electronic transitions
anti-bonding
σ*
π*
e e n
e π
bonding
e σ
n→π* n→σ* π→π* σ→σ*
σ→σ* n→π* Condition to absorb light
high E, low λ (<200 nm) 200-700 nm, weak (200-800 nm):
n→σ* π and/or n orbitals
150-250 nm, weak π→π*
200-700 nm, intense CHROMOPHORE
The UV spectrum
1.0 λmax
217 nm
σ* 0.8
π*
absorbance
0.6
n
0.4
e π
0.2
σ
0.0 no visible light absorption
π→π*
200 220 240 260 280 300
wavelength (nm)
signal envelope
vibrational
E*
energy
electronic levels
How many signals do you
expect from CH3-CH=O?
rotational
electronic levels
E0
The UV spectrum
σ* 0.10
O
π* 0.08
absorbance
e n (O) 0.06
e π 0.04
0.02
σ
0.0 no visible light absorption
n→π* π→π*
200 220 240 260 280 300
wavelength (nm)
The UV spectrum
Conjugation effect
delocalisation λmax λ ν E
171
217
258
C2H4 C4H6 C6H8
π*
e
e
e π
The UV spectrum
Conjugation effect: β-carotene
white light
absorbance
300 360 420 480 540
wavelength (nm)
The UV spectrum
Complementary colours
650 - 780 380 - 435
580 - 595 435 - 480
500 - 560 480 - 490
If a colour is absorbed by white light, what the eye detects
by mixing all other wavelengths is its complementary
colour
Inorganic compounds
UV-vis spectra of transition metal complexes originate from
Electronic d-d transitions
dσ
eg
degenerate
d-orbitals
+ ligand ∆
TM
t2g
TM
dπ
…
Inorganic compounds
dx2-y2
Crystal field theory (CFT) - electrostatic model
same electronic structure of central ion as in isolated ion
perturbation only by negative charges of ligand
dx2-y2, dz2
dx2-y2
dxy, dxz, dyz
dz2
∆
atom in
spherical field
∆ ∆
dx2-y2, dz2 dxy
dxy
gaseous atom
dxy, dxz, dyz
dyz, dxz
∆ = crystal field splitting dz2
tetrahedric octahedric tetragonal square planar
field field field field
Inorganic compounds
d-d transitions: Cu(H2O)62+
eg
degenerate
d-orbitals
∆ light
+ 6H2O
Cu2+
t2g
Cu(H2O)62+
Yellow light is absorbed and the Cu2+ solution is coloured in blue (ca. 800 nm)
The greater ∆, the greater the E needed to promote the e-, and the shorter λ
∆ depends on the nature of ligand, ∆NH3 > ∆H2O
Inorganic compounds
TM(H2O)6n+
elec. config. TM
gas complex Cu2+ Fe2+
3d1 t2g1 Ti(H2O)63+ Ni2+ Co2+
3d2 t2g1 Ti(H2O)63+
absorbance
3d3 t2g3 Cr(H2O)63+
3d4 t2g3eg1 Cr(H2O)62+ Cr3+
3d5 t2g3eg2 Mn(H2O)62+
Ti3+ V4+
3d6
3d7
3d8
3d9 t2g6eg3 Cu(H2O)62+
400 500 600 700 800 900 1000
wavelengths (nm)
d-d transitions: εmax = 1 - 100 Lmol-1cm-1, weak
Inorganic compounds
d-d transitions: factors governing magnitude of ∆
Oxidation state of metal ion
∆ increases with increasing ionic charge on metal ion
Nature of metal ion
∆ increases in the order 3d < 4d < 5d
Number and geometry of ligands
∆ for tetrahedral complexes is larger than for
octahedral ones
Nature of ligands
spectrochemical series
I- < Br- < S2- < SCN- < Cl- < NO3- < N3- < F- < OH- <
C2O42- < H2O < NCS- < CH3CN < py < NH3 < en <
bipy < phen < NO2- < PPh3 < CN- < CO
Inorganic compounds
d-d transitions: selection rules
spin rule: ∆S = 0
on promotion, no change of spin
Laporte‘s rule: ∆l = ±1
d-d transition of complexes with center of simmetry are forbidden
Because of selection rules, colours are faint (ε= 20 Lmol-1cm-1).
Inorganic compounds
UV-vis spectra of transition metal complexes originate from
Electronic d-d transitions
eg
degenerate
d-orbitals
+ ligand ∆
TM
t2g
TM
Charge transfer
Inorganic compounds
Charge transfer complex
no selection rules → intense colours (ε=50‘000 Lmol-1cm-1,
strong)
Association of 2 or more molecules in which a fraction of
electronic charge is transferred between the molecular
entities. The resulting electrostatic attraction provides a
stabilizing force for the molecular complex
Electron donor: source molecule
Electron acceptor: receiving species
CT much weaker than covalent forces
Ligand field theory (LFT), based on MO
Metal-to-ligand transfer (MLCT)
Ligand-to-metal transfer (LMCT)
Inorganic compounds
Ligand field theory (LFT)
involves AO of metal and ligand, therefore MO
what CFT indicates as possible electronic transitions (t2g→eg)
are now: πd→σdz2* or πd→ σdx2-y2*
πpx*, πpy*, πpz*
σp*
4p
σs *
σd*
4s eg
∆
t2g
πdxy, πdxz, πdxy 2s
3d
σd
AOTM AOL
σp
∆ = crystal field splitting
σs
MO(TML6n+)
Inorganic compounds
Ligand field theory (LFT)
LMCT
ligand with high energy lone pair
or, metal with low lying empty orbitals
high oxidation state (laso d0) 4σ
M-L strengthened 2π∗ 2π∗
O
1π 1π
3σ
C
MLCT
2π∗ 5σ 2π∗
ligands with low lying π* orbitals (CO, CN-, SCN-)
low oxidation state (high energy d orbitals)
Metal
M-L strengthened, π bond of L weakened
back donation!!!
CO adsorption on
precious metals
UV-Vis spectroscopy
Instrumentation
Examples for catalysis
Dr. Davide Ferri
Empa, Lab. for Solid State Chemistry and Catalysis
044 823 46 09
davide.ferri@empa.ch
Instrumentation
Dispersive instruments
Measurement geometry:
- transmission
- diffuse reflectance
double beam spectrometer
single beam spectrometer
In situ instrumentation
Diffuse reflectance (DRUV) Fiber optics
to detector
gas outlet - time resolution (CCD camera)
[spectra colleted at once]
- coupling to reactors
- 20% of light is collected
- no NIR (no optical fiber > 1100 nm)
- gas flows, pressure, vacuum
- long term reproducibility (single beam)
- Limited high temperature (ca. 600°C)
- long meas. time
- spectral collection (λ after λ)
→ different parts of spectrum do not represent same reaction time!!!
Weckhuysen, Chem. Commun. (2002) 97
In situ instrumentation
Integration sphere
White coated integration sphere
(MgO, BaSO4, Spectralon®)
integration
- > 95% light is collected
sphere
- high reflectivity
- wide range of λ
- only homemade cells
for example, for cat. synthesis
Weckhuysen, Chem. Commun. (2002) 97
Examples
Determination of oxidation state: 0.1 wt% Crn+/Al2O3
Cr6+ (250, 370 nm) reduction in CO atmosphere
Cr3+/Cr2+
Weckhuysen et al., Catal. Today 49 (1999) 441
Examples
Determination of oxidation state: 0.1 wt% Crn+/Al2O3
calibration
Cr3+ distribution of Crn+
100
Cr6+
Cr6+
% 50
Cr5+
Cr3+
Cr2+
deconvolution
0
A B C D E F
A: calc. 550°C
B: red. 200°C
C: red. 300°C
D: red. 400°C
E: red. 600°C
F: re-calc. 550°C
Weckhuysen et al., Catal. Today 49 (1999) 441
Examples
Determination of oxidation state: 0.2 wt% Crn+/SiO2
chemometrics * PCA, principal component analysis
FA, factor analysis
PLS, partial least squares
own routines…
* decomposition into pure components
(including noise)
Weckhuysen et al., Catal. Today 49 (1999) 441
Examples
Determination of oxidation state: 0.5 wt% Crn+/SiO2
pure components
DRUV, 350°C, 2% isobutane-N 2
360 360 625
625
450
Weckhuysen et al., Catal. Today 49 (1999) 441
Examples
Determination of oxidation state: 4 wt% Crn+/Al2O3
20 scans, 50 msec
in situ DRS
calc. 850°C, O 2
He
C3H8, 21 sec
C3H8, 6 min
ex situ DRS
Cr6+
hydrated
K-M intensity
calcined 550°C 26000
Cr3+ reduced 550°C
Cr6+, 26000 cm-1
C3H8 feed
40000 30000 20000 10000
wavenumber (cm-1)
O2 regeneration
Puurunen et al., J. Catal. 210 (2002) 418
Examples
Comparison of techniques: x wt% Crn+/support
HAADF-STEM xCr-Al2O3
Raman
wt.%
10
1Cr-SBA15 5Cr-SBA15 5
1
0.5
1Cr-Al2O3 5Cr-Al2O3
5Cr-SBA15 5Cr-Al2O3
XRD
0 2 4 6 8 10 2 4 6 8 10
xCr-Al2O3
energy (KeV) energy (KeV)
Santhosh Kumar et al., J. Catal. 261 (2009) 116
Examples
Reactivity of V/TiO2 after oxidative treatment
V5+Ox
VxOy VxOy
air flow @ 450°C
O2/C3H8 @ 20°C V5+ → V4+
@ 100°C
@ 150°C O
@ 200°C
O O
V
O O
TiO2: 402 cm-1
V2O5: 996 cm-1
Brückner et al., Catal. Today 113 (2006) 16
Examples
Reactivity of V/TiO2 after oxidative treatment
UV-vis: V5+ CT (UV)
V4+ d-d transitions (vis) V5+ → V4+
d-d
CT
Brückner et al., Catal. Today 113 (2006) 16
Examples
Determination of speciation: Fe species in Fe-ZSM5
hydrated samples
isolated Fe3+
oligomeric FexOy
extended F2O3-like clusters
calcination @ 600°C
α-Fe2O3
calcined
hydrated
Santhosh Kumar et al., J. Catal. 227 (2004) 384