0% found this document useful (0 votes)
162 views36 pages

UV-Vis - D. Ferri PDF

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
162 views36 pages

UV-Vis - D. Ferri PDF

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 36

UV-Vis spectroscopy

Basic theory

Dr. Davide Ferri


Empa, Lab. for Solid State Chemistry and Catalysis
 044 823 46 09
 davide.ferri@empa.ch
Importance of UV-Vis in catalysis

IR

Raman

NMR

XAFS

UV-Vis

EPR

0 200 400 600 800 1000 1200


Number of publications

Number of publications containing in situ, catalysis, and respective method


Source: ISI Web of Knowledge (Sept. 2008)
The electromagnetic spectrum

VISIBLE ULTRAVIOLET

1015-1016 Hz 1016-1017 Hz

200

source: Andor.com
The ‘energy’ unit

 Typically, the wavelength (nm) is used


 the distance over which the wave's shape repeats

x nm = 10’000’000 / x cm–1
y cm–1 = 10’000’000 / y nm
Is UV-vis spectroscopy popular?

pros
 economic
 non-invasive (fiber optics allowed)
 versatile (e.g. solid, liquid, gas)
 extremely sensitive (concentration)

cons
 Broad signals (resolution)
 Time resolution (S/N)
What is UV-vis spectroscopy?

 Use of ultraviolet and visible radiation


 Electron excitation to excited electronic level (electronic
transitions)
 Identifies functional groups (-(C=C)n-, -C=O, -C=N, etc.)
 Access to molecular structure and oxidation state
Electronic transitions

Organic molecule Organic molecule


anti-bonding anti-bonding
σ*
empty
π*
lone pairs e e n e e
occupied e π e
bonding bonding
e σ e

n→π* n→σ* π→π* σ→σ* n→π* n→σ* π→π* σ→σ*

E= hν λ= c/ν

high e- jump → high E


high E → high ν high ν → low λ
Electronic transitions

anti-bonding
σ*

π*
e e n
e π
bonding
e σ
n→π* n→σ* π→π* σ→σ*

σ→σ* n→π* Condition to absorb light


high E, low λ (<200 nm) 200-700 nm, weak (200-800 nm):

n→σ* π and/or n orbitals


150-250 nm, weak π→π*
200-700 nm, intense CHROMOPHORE
The UV spectrum
1.0 λmax
217 nm

σ* 0.8

π*

absorbance
0.6
n
0.4
e π
0.2
σ
0.0 no visible light absorption
π→π*
200 220 240 260 280 300
wavelength (nm)
signal envelope

vibrational
E*
energy

electronic levels
How many signals do you
expect from CH3-CH=O?
rotational
electronic levels
E0
The UV spectrum

σ* 0.10
O
π* 0.08

absorbance
e n (O) 0.06

e π 0.04

0.02
σ
0.0 no visible light absorption
n→π* π→π*
200 220 240 260 280 300
wavelength (nm)
The UV spectrum
 Conjugation effect
delocalisation λmax λ ν E

171

217

258

C2H4 C4H6 C6H8


π*

e
e
e π
The UV spectrum
 Conjugation effect: β-carotene
white light

absorbance

300 360 420 480 540


wavelength (nm)
The UV spectrum
 Complementary colours

650 - 780 380 - 435

580 - 595 435 - 480

500 - 560 480 - 490

If a colour is absorbed by white light, what the eye detects


by mixing all other wavelengths is its complementary
colour
Inorganic compounds
 UV-vis spectra of transition metal complexes originate from

 Electronic d-d transitions

eg
degenerate
d-orbitals

+ ligand ∆

TM

t2g
TM

 …
Inorganic compounds
dx2-y2
 Crystal field theory (CFT) - electrostatic model
 same electronic structure of central ion as in isolated ion
 perturbation only by negative charges of ligand
dx2-y2, dz2
dx2-y2

dxy, dxz, dyz


dz2

atom in
spherical field
∆ ∆

dx2-y2, dz2 dxy

dxy
gaseous atom
dxy, dxz, dyz

dyz, dxz
∆ = crystal field splitting dz2

tetrahedric octahedric tetragonal square planar


field field field field
Inorganic compounds
 d-d transitions: Cu(H2O)62+
eg
degenerate
d-orbitals

∆ light
+ 6H2O

Cu2+
t2g

Cu(H2O)62+

 Yellow light is absorbed and the Cu2+ solution is coloured in blue (ca. 800 nm)
 The greater ∆, the greater the E needed to promote the e-, and the shorter λ
 ∆ depends on the nature of ligand, ∆NH3 > ∆H2O
Inorganic compounds
 TM(H2O)6n+

elec. config. TM
gas complex Cu2+ Fe2+
3d1 t2g1 Ti(H2O)63+ Ni2+ Co2+
3d2 t2g1 Ti(H2O)63+

absorbance
3d3 t2g3 Cr(H2O)63+
3d4 t2g3eg1 Cr(H2O)62+ Cr3+
3d5 t2g3eg2 Mn(H2O)62+
Ti3+ V4+
3d6
3d7
3d8
3d9 t2g6eg3 Cu(H2O)62+

400 500 600 700 800 900 1000


wavelengths (nm)

d-d transitions: εmax = 1 - 100 Lmol-1cm-1, weak


Inorganic compounds
 d-d transitions: factors governing magnitude of ∆

 Oxidation state of metal ion


 ∆ increases with increasing ionic charge on metal ion

 Nature of metal ion


 ∆ increases in the order 3d < 4d < 5d

 Number and geometry of ligands


 ∆ for tetrahedral complexes is larger than for
octahedral ones

 Nature of ligands
 spectrochemical series

I- < Br- < S2- < SCN- < Cl- < NO3- < N3- < F- < OH- <
C2O42- < H2O < NCS- < CH3CN < py < NH3 < en <
bipy < phen < NO2- < PPh3 < CN- < CO
Inorganic compounds
 d-d transitions: selection rules

spin rule: ∆S = 0

on promotion, no change of spin

Laporte‘s rule: ∆l = ±1

d-d transition of complexes with center of simmetry are forbidden

 Because of selection rules, colours are faint (ε= 20 Lmol-1cm-1).


Inorganic compounds
 UV-vis spectra of transition metal complexes originate from

 Electronic d-d transitions

eg
degenerate
d-orbitals

+ ligand ∆

TM

t2g
TM

 Charge transfer
Inorganic compounds
 Charge transfer complex

 no selection rules → intense colours (ε=50‘000 Lmol-1cm-1,


strong)

 Association of 2 or more molecules in which a fraction of


electronic charge is transferred between the molecular
entities. The resulting electrostatic attraction provides a
stabilizing force for the molecular complex

 Electron donor: source molecule


 Electron acceptor: receiving species

 CT much weaker than covalent forces

 Ligand field theory (LFT), based on MO


 Metal-to-ligand transfer (MLCT)
 Ligand-to-metal transfer (LMCT)
Inorganic compounds
 Ligand field theory (LFT)
 involves AO of metal and ligand, therefore MO
 what CFT indicates as possible electronic transitions (t2g→eg)
are now: πd→σdz2* or πd→ σdx2-y2*
πpx*, πpy*, πpz*

σp*
4p
σs *

σd*
4s eg

t2g
πdxy, πdxz, πdxy 2s
3d
σd

AOTM AOL
σp
∆ = crystal field splitting
σs

MO(TML6n+)
Inorganic compounds
 Ligand field theory (LFT)

 LMCT
 ligand with high energy lone pair
 or, metal with low lying empty orbitals
 high oxidation state (laso d0) 4σ
 M-L strengthened 2π∗ 2π∗
O
1π 1π

C
 MLCT
2π∗ 5σ 2π∗
 ligands with low lying π* orbitals (CO, CN-, SCN-)
 low oxidation state (high energy d orbitals)
Metal
 M-L strengthened, π bond of L weakened
back donation!!!

CO adsorption on
precious metals
UV-Vis spectroscopy

Instrumentation
Examples for catalysis

Dr. Davide Ferri


Empa, Lab. for Solid State Chemistry and Catalysis
 044 823 46 09
 davide.ferri@empa.ch
Instrumentation
 Dispersive instruments

Measurement geometry:
- transmission
- diffuse reflectance

double beam spectrometer

single beam spectrometer


In situ instrumentation
 Diffuse reflectance (DRUV)  Fiber optics

to detector

gas outlet  - time resolution (CCD camera)


[spectra colleted at once]
- coupling to reactors

 - 20% of light is collected


 - no NIR (no optical fiber > 1100 nm)
- gas flows, pressure, vacuum
- long term reproducibility (single beam)
- Limited high temperature (ca. 600°C)
 - long meas. time
- spectral collection (λ after λ)
→ different parts of spectrum do not represent same reaction time!!!

Weckhuysen, Chem. Commun. (2002) 97


In situ instrumentation
 Integration sphere

White coated integration sphere


(MgO, BaSO4, Spectralon®)

integration
- > 95% light is collected
sphere
- high reflectivity
- wide range of λ

- only homemade cells

for example, for cat. synthesis

Weckhuysen, Chem. Commun. (2002) 97


Examples
 Determination of oxidation state: 0.1 wt% Crn+/Al2O3

Cr6+ (250, 370 nm) reduction in CO atmosphere


Cr3+/Cr2+

Weckhuysen et al., Catal. Today 49 (1999) 441


Examples
 Determination of oxidation state: 0.1 wt% Crn+/Al2O3
calibration

Cr3+ distribution of Crn+


100

Cr6+
Cr6+
% 50
Cr5+
Cr3+
Cr2+

deconvolution
0
A B C D E F
A: calc. 550°C
B: red. 200°C
C: red. 300°C
D: red. 400°C
E: red. 600°C
F: re-calc. 550°C

Weckhuysen et al., Catal. Today 49 (1999) 441


Examples
 Determination of oxidation state: 0.2 wt% Crn+/SiO2

chemometrics * PCA, principal component analysis


FA, factor analysis
PLS, partial least squares
own routines…

* decomposition into pure components


(including noise)
Weckhuysen et al., Catal. Today 49 (1999) 441
Examples
 Determination of oxidation state: 0.5 wt% Crn+/SiO2

pure components
DRUV, 350°C, 2% isobutane-N 2

360 360 625

625

450

Weckhuysen et al., Catal. Today 49 (1999) 441


Examples
 Determination of oxidation state: 4 wt% Crn+/Al2O3
20 scans, 50 msec
in situ DRS
calc. 850°C, O 2
He
C3H8, 21 sec
C3H8, 6 min

ex situ DRS
Cr6+
hydrated
K-M intensity

calcined 550°C 26000


Cr3+ reduced 550°C

Cr6+, 26000 cm-1


C3H8 feed

40000 30000 20000 10000

wavenumber (cm-1)

O2 regeneration

Puurunen et al., J. Catal. 210 (2002) 418


Examples
 Comparison of techniques: x wt% Crn+/support
HAADF-STEM xCr-Al2O3
Raman

wt.%
10

1Cr-SBA15 5Cr-SBA15 5

1
0.5

1Cr-Al2O3 5Cr-Al2O3

5Cr-SBA15 5Cr-Al2O3
XRD

0 2 4 6 8 10 2 4 6 8 10
xCr-Al2O3
energy (KeV) energy (KeV)

Santhosh Kumar et al., J. Catal. 261 (2009) 116


Examples
 Reactivity of V/TiO2 after oxidative treatment
V5+Ox

VxOy VxOy

air flow @ 450°C


O2/C3H8 @ 20°C V5+ → V4+
@ 100°C
@ 150°C O
@ 200°C
O O
V
O O

TiO2: 402 cm-1

V2O5: 996 cm-1

Brückner et al., Catal. Today 113 (2006) 16


Examples
 Reactivity of V/TiO2 after oxidative treatment

UV-vis: V5+ CT (UV)


V4+ d-d transitions (vis) V5+ → V4+

d-d

CT

Brückner et al., Catal. Today 113 (2006) 16


Examples
 Determination of speciation: Fe species in Fe-ZSM5
hydrated samples
isolated Fe3+
oligomeric FexOy
extended F2O3-like clusters

calcination @ 600°C

α-Fe2O3
calcined

hydrated

Santhosh Kumar et al., J. Catal. 227 (2004) 384

You might also like