0% found this document useful (0 votes)
156 views40 pages

Fourier Transform Unit 2

Uploaded by

Tushar Verma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
156 views40 pages

Fourier Transform Unit 2

Uploaded by

Tushar Verma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 40
9 Fourier Transforms 1. Introduction Fourier Transforms are use sathematies Physics and &, ae Ree ao fad 2 or of energy si r weful in the study of the spectral caracter of energy signals. Fourier transforms s, i differential equations, orms can be used in the solution of integral equations Seful Working tools in treati ‘nwineering. It is particularly 2. Fourler Transform [or infinite Fourler Transtorm| et f(t) be a fi i efines Let f lunction defined for ¢ « (~», 2). Then the (infinite) Fourier transform of fit) is denoted by Fi f(t)} and is defined as J fe "dt, provided the integral exists. Thus, j fit)e dt ft) = nn Clearly this integral is a function of s and can be denoted by the symbols /(s) or simply by fis), Fo =FUfO)= [foe Mat a The inverse formula for infinite Fourier transform is [ime as of) 1 =F"1{ Fls)}= ZA =F" f(s} ae Note. 1. We can also use the notation f(s) for the Fourier transform of the function f(x). 2. Some authors take the coefficients of integral in (1) and (2) as - , - instead of 1 and x’ Vr 2, taken by us. 3. Some authors define Fourier complex transforms as Fis) = froe at 22 SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS, and inverse transform as f= z fire “ds 2n Infact, both the definitions lead to the same conclusion. 4. If /(0 is absolutely integrable, then the Fourier transform of f(t) defined by eq, (1) is called Spectrum or Spectral density of ft). |F {f (#))|is called energy spectrum of f. 9.3. Fourier Sine Transform [or Infinite Fourier Sine Transform] QD The infinite Fourier sine transform for function f(t) where, 0 < t < © is denoted by Sf, (tO) and is defined as CF =F, (f= Jrosin at dt (3) 3 ‘The inverse formula for the infinite fourier sine transform is given as Ft = Po) <2 J Fils)sin st a wd) 5 9.4, Fourier Cosine Transform [or Infinite Fourier Cosine Transform] FS) The infinite Fourier cosine transform for function f(t), 0 0, Proof. (1) We know that 7(s)= fe fix) dx A) o4 SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS Now , Fiftax)) = j © flax) dx Put ax =f so that adv = dt ripen = To! po dat (ax)) = j e : =i fe (3) dt ae 7(2) a'\a @) Weknow that 7, (6) = Fy(fe)= f fla) sin sx dx 3 Now, F (flan) = | f (ax)sin sx de 3 : Putax=t sothat adx=dt ae Fiftax)) = f eosin (o£) [te a>] é aja ” f(e)sin (2) dt If F (6) is the Fourier transform of f(x), then show that e~* F (s) is the Fourier _. transform of f (x - a). (K.U, 2012, 11; M.D.U. 20081 Proof. Fifte—a)) = fe flea) de Putx—a=tso that dx =dt Fifa) = fee Feat \URIER TRANSFORMS Po = fem emp ae 7 Je F(t)dt <0 " Fis). f is i “ If f (s) is the infinite Fourier transformation of f (x), then Fourier transform of 7 15 1s f(x) cos ax is given by ght a +3 Fiera). (KU. 2012} Proof: FI f(x) cos ax} = J e'* f(x) cos ax dx — (By definition of Fourier transform) eT ese (eit eerie i 2 ve a | reas x Jetere Fle) de + 3 feterms flx) dx = LFe-a)+Foerar. SOLVED EXAMPLES Type I. Some Examples Based on Fourier Transforms. Example 1. Find the Fourier transform of f (x) = e~*!*|, where a > 0 and x € (— ®, ~). LEG (ay @. « Solution. Here f(s) = [fe de = fesiles de 5 = -alz| p-ise a |x| g-isx Jesters de + fe el de = fee ie dey ferterans a " d 4 26 SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS © asst” & le 2. Find the Fourier transform of the function or fey {hl Oar ce ~ 0, otherwise Solution. 7 (6) =Fif@= [fade ™ de = [reve de + [roe ax + free ax -= o a = foe ae + fret acs fore ae [Given} = ao a 04k [eax +0 é -.(22] . —# Jye0 + , =F foro) = (e-isa_y), is 3 Example 8. Find the Fourier transform of the step function van | Binet! pa 21 0, |x|>0 po . _p -A 4 & Solution, FI/@) = [fe fz)de *e fe) = + 1 = few Fladde+ fe fa)dx+ fe rade : i [irene ays foe aes oem de 4 i oust ‘TRANSFORMS 97 dx +0 . Jo. ays fo oa a ample 4. Find the Fourier transform of the function ky de (-1, -a dle { 0, x<0- Solution. f(s) = F [f(x)] = : Flee dx = Trove aes] pee a a a. ° Joe ars fre -s ° =0+ frcetems PS Untegrating by parts] . 7 00 J, cue [e - 0} Laid | — : etsins je ari? Lim 1 x | 4 [ = tis sso ler oi | 14 ig)? [x 1 ae ; x ~ hy he [un Fon raa| + 1 em | e+ is? [+ e® = cos 0 +i sin 6] ~— 4, Lim asi? 38 Lim oumims| Ese @F x cosax+isin ox t ae | i ‘so (+is)? |=>* ¢F (cos sx tisinss) | * ayin) 1 1 ae a -0-~—> 941 _ l+is (1+ is? (1+ is)? Lim © = Lim © = ping 1 o| roe So (ey mS 1 upléR TRANSFORMS K a Ee 99 exercise 9.1 ' 1 zen L rear eentens reine He eo 2 Oy (xfer uu : = ¢ ne Ka! pS a 0G eet | fe? dada, | “ i { 4 trove hat he Pour tanaform af pp ( F\i0 2 =F). 7 FO)? t 1-=, for O uo : : Hp 7 UPL oor U7 Uy ANSWERS eilo-ab _ gilw-sia T= s) Gp Bsinuos iy Ziups? Dvn ge + 2Hgs cs 081 = ‘ ee SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS be usit ese results Note. Students are advised to remember the following, results. We shall be using thes 8 in the following solved examples pola sin bx +0)-b eos x0) ue fet sinrsede = fa) [c™ costbx +6) dx = J a +8 From these it follows that {acos (bx +c)+ sin (bx +0)) i eo meaas) fewsineeds she fe het Tenn)? 2 y P48 2 eptcius com Lim bt) aa 4 © cos bx dx a 4 » i“ J Fae 9 B74 42 Type Il. Some Examples Based on Fourier Sine and Cosine Transforms. Example 1. Find the sine and cosine Fourier transform of 2e-% + 5e~*, ~ Solution. (i) Here f(x) = 2¢-8 4 5¢-2 Now, Fils) = [fe rsin sede = Ff 00) 0 . - Fs) = [Qe + 5e-%) sin sx dx é so. « =2 fe sin Sede +5 fe* sin sx dx o “0 ° - s 8 © 2 a (Refer note above] - [ 2 5 zs W+s? S44 « { @) Fis) = | (2e"* + 50") cos sx dx 3 YS DY NAA unfit TRANSFORMS a Find the Fourier ne transfor tu T sform of x Solution. Here fy. 2" ® £9) =F, faxy Differentiating w.r+, s, using Le fer 8, using Leibni ibnitz rule of di — on wrt a, YOu dbte, byt ay, of differentiation under integral sign, we have d (>, Te ath) = [ : a’ Integrating w.r-t ‘s’, we have ee () = a--tan* 5 4¢ aa = tant S4¢ a Putting s = 0 in (1), we get 7, @=0 Putting s = 0 in (2), we got he (0) =¢ e=0 Hence from (2), we have 6 Fi) = tan =. ‘ .ple 3, Find the Fourier cosine transform of e-**. Solution, Here f(x) =e" Fis) = FA foo =I (say) [Refer note above] (2) (3) Ad) [From (3)and (4)] ae SPECIAL FUNCTIONS AND. INTEGRAL TRANSFORMS t= fe é Differentiating w.r.t ‘s’, using Leibnitz rule of differentiation under integral sign, we have vos sx dx: (1) ae = ri ao)” sin ax-x dx ‘ - Pa olay ep LLAT a2 Teorey se =a! 2x e*) sins de ’ ache a sy * ds 2 (Using (D) fret a a ad Funuion | ds (8 BR Fe Ot) I 2 Integrating Wrt's’, we get or or (2) o Putting s = 0 in (2), we have Isc ip TRANSFORMS nt ot! From (2), Ie plence the result. example 4. (0 If f.(s) is the Fourier sine transform of f(x), then prove that the Fourier cinetransform of f (2) is af, (as), where a > 0, (ii) If f(s) és the Fourier cosine transform of f (x), then prove that the Fourier cosine sransform of f (2) is a f,(as), where a >0. Solution. (i) We know that f(s) = = resin sx ae CQ) i -{r(B} Put X=1 sothat dx =adt a jin ‘Thus, we have F, {r (2) =a | fw sin (ast) at 3 ion =af,(as) (ii) Proceed similarly as in part (i). 6 3 Ble : sins, O< \ Bxampleg. Eisdthe sine transform of the function f(x) = { 3 2 a 3 ig ) Find the Foorer gine and mine ans 78 =x. Inm= oe b, ocece F2= ( A x asxsb. On =>b 3,_-Find the Fourier sine transform off) #£ f@= | SQ cos x, when 0er0 Hence from (2), we have fe) = 2 tant = ar Deduction: Puttinga =0in f(x) = 2 tan =, we have ne Oe | FOURIER TRANSFORMS () 3 tant on) |ava 0 * a} =o x x Fay loo BES nay he Fourier transform of Fla) = {3 for |xjc1 -1444) . 0 for \x\>1 > Hence evaluate jm ide IM.D.U, 2012, 11; K.U. 2011) 38 Solution, Fi fq James dx “1 fre oF dee Ire dx+ { Fla) e™ dx > AA i 1 0+ [fre devo Ue f@) =I for |x| <1] = 28iS for's 20 s so 1 for s=0 5-0, | fea ; a FUG) = 2sins) i 540 Thus, if s=0 inversion formula, Now using 9.22 or [PsB8 oe ds . ie, [P22 0% as Putting x =0, we have or or oY 2 Ghoti the Fourier transform of fe = nae [eeilter x3, |x|<1 and hence evaluate J ( Zoos ® é ae Iat SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS sin s =f js e ds,s#0 -a{h for |x|<1 ©, for |x|>1 Newest 0, for|x|>1 ae Gs integrand is an even function of s we MDU “\A%41 % Ikl>t -|>%>I 5 ° SS ee lo eS ow tae 60 ' “p.0. 2007 2 Solution. Here fore {ie pee 0, Now, | F(s) =Ff@)}= *<-lorx>1 fe* reas ESSEX Grade by NAAC FOURIER TRANSFORMS, | = Je ronae Jeu -5 Je" rndes few pods ~ - ® elayet F / [a He 2s ae ‘ (-is} (By general rule of integration by parts] (o ation (3) rae t peck Ascoss +4sin s] = 4,[sins— 5 cos s} 4) Deduction : Weknow that fG)= 2 f Fie as on * {By inverse transformation} ~it4 jes fa) = 5 J isin scons ds (By) Reversing the sides, we have +] Aisin o cose ds =f) an) 1 4 Gi tex*, |al0 xe Lex? 2 ons Find the Fourier transform of f(x) defined by FQ) = { Vv QB jee . (M.D.U. 20071 Now, Fif@) = fe (F(x) dx = fee pedes je“ fonds fo nd ett we is _ oo Sinas rot) ie, fi) = anes Deductions : i . J Flore ds Wefinition ofinverse transform) (i) Weknow that fa) = FZ) — anpey= J fre ds (Using) 1 oe eit ds o myers 1 —— | % EGRAL TRANSFORMS 228 SPECIAL FUNCTIONS AND INTEGI 1 if [xfea [By reversing the sides) or ds = 2x . 0, if [xfoa 7 2sinas [2m iflela Equating real paris on both sides, we get [sina cos 2 {[m if lela (‘Taking x = 0 and a = 1 in result of part (i), we have ee ds =n |0}<1 3 or 2 J So [Property of definite integral] s 4 or “ sin s <2 [meas 2 Ay Example 7. Solve the integral equiation J f(x) 08 ox de 4 Solution. Given { f(s) cosexdx= 7 (9) = { 1-8, for Ol By inversion formula, fx) 2 | Fle) 8 sx ds i Oo FOURIER TRANSFORMS 9.27 2|' « <3 J F.(s) cos sx ds + J 7.18) cos sx ds i 1 =2 = 2 Joeman +0 | Untegrating by parts} = 2(1-c0s x = (|S). Example 8. Show that the Laplace integral o -fu) Sin ee gs, x>0, @>0 is equal to © ea, dass? 2 Solution. Let f(z) Se", x>0,a>0 0 Fy Uf) f(x) sin sx dx 4 e a Ir J [: fe sin bx dx é By sine inversion formula, ) =F 3 fo = E355) -2 ft se ain sx ds aia 3 a 27 ; s e a on Grin sx ds “Tssin st gy. Lm nu yy on Sat = Fe" .2>0,a>0 ao 9.28 HONS AND INTEGRAL TRANSFORMS WAL EU EXERCISE 9.3 if's< 2a 1. Find f(x) ifits cosine transform is /.(s) = if'se 2a a, What 2. Find the cosine transform of a function of x which is unity for 0 8 (n +1) 0, where tano = * & fix) —— nite a noma x?) FOURIER TRANSFORMS, 29 9.6. Convolution (Definition) “The convolution of 4 wo functions by Fw and is defined ag "HOM £0) and K(x) over the interval (.# a 1 Also, fg naap follows v so that du =— dy >) is denoted which can be easily proved as In (1), put x-us Fr@e = | pe - gua) J a fe-vdv =@*f)(x) & lence, fegagep Convolution Theorem for Fourier Transform Fite If Fi f(@)} and Fig()} are the Fourier transforms of the functions f(x) and © 42) respectively, then the Fourier transform of convolution of f(x) and g (x) is the product of their Fourier transforms. $ ov Qols Proof : By definition of Fourier transform, : FI (x) * g()] Je™ F@)+ ao) ae 1 (By def. of convolution) 845 ey) wd = jr] fe exw) al (By changing the order of integration) = [rel Jon g(x —u) ew tx = fem rl fe FOS Bx) ax Lu = SPECIAL FUNCTIONS AND_ IN’ fe ‘tn git) dt du fe Flu) | Putting x —u = t 80 that dx = dt) fe ‘ f(u) du-Flgit)) 4 = fet paydx- Fiat) =FIf@). Fle) a8. Fourier Transform of the Derivative ‘ Theorem 1. If the Fourier transform of f(x) is f (s), then the Fourier transform of f'(z) is given bylis F (s). ALEC) - fls * Sf Proof. FC) = fe fade a ‘ = po] - fois) pyar =O+is J e f(x) dx, provided f(x) > 0 asx > +0 Sin 2. (Extension of the above result) e an pone f(x) and first (n - 1) derivatives of f(x) vanish identically as x — + ©, then “| =U" Fi). Te (ig Oe Td is Tat > Oasx>tx af . er i yay oe dx" 7 FOURIER TRANSFORNS “. = Gay? pa 2e) a In general, applying general rule of _ ee . integration by parts, we have =e P'3) de ot “e] = [emer escialymt fomigt) yo a De® (is) (Fen) | = +n" Jercisr f(x) de As f(x) and first (n ~ 1) derivatives +0 asx + +0 {ee =(isy Fs). Theorem 3. If the Fourier sine and cosine transforms of f(x) and f’ (x) exist and fx) Ove then (f'@)] =-9 Ff) Se [f@1-FO. Proof: (i) F,{f" Wl = J F'@)sin sx de (By definition] a = {i sin sx f(x) dx Untegrating by parts] é = [sin sx. f@)]!") - J scos ex. f3) de 3 =0-0-s J F008 sx ae [- f@) > 0as z+] é Hence, F,{f"ol =F F00 SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS 922 7 [By definition} wa) FL GI] = | f'C2) cos sx dx é _ j cos sx f'(x) de Untegrating by parts] = [eossx. f(a)]" 5 - J -ssin se. f(2) de 3 =0-(c0s0).fO)+s ffG@sinseds — [v fla) >0asx>a] é =-/(0)+sF, [f@l Hence, FL f"(@)] = F, #@-F). Note. In th¢ similar way, we can also prove the following results N ye Ff" @)) =-s F, [f'@)) =-s Is F, (fF) -F0) SF, [fG0]+8 (0) Ff" @)) =sF, (f'@1-F'0) =s[-sF, {fiwl-f' 0) =-s? F, f)) -f' (0). elation Between Fourier and Laptace Transform (M.D.U. 2011] eo, t>0 7 tK<0 Define a function f(t) such thay’ f(t) = { Fife) = fem fat ° 5 = fem rma fem piorar Es d / ° s = fem odes fee onrae a . = fered j = fe“ omar, where x + iy =5 4 =Li ow) Hence, Ff@) = Ll 9 (). b y FOURIER TRANSFORMS If @ Gi Parsevar’ 'S Ideny Y fo (s) and GO) de, nek ourler Transtorm eu ‘ou a Ir _ rier transform Of f(x) and g (x), then (8) Gis) dy | [re ate re fire den fire an where bar indicate, the com, Plex conju, gate, Proof : (i) [roe ae (ii = 1 = J Fx) {x i Gis) ot alas By inverse transform for #(x) = tae! 7 = - = 32 J G@) [rere axbas [Changing the order of integration] " 175 On J Gls) - Fis) ds [By definition of transform of f (x)| ) Putting g (x) = f(x) in part (i), we have = JFPOFeas = fre@f@dc= fir@p ax = -o 0 or & fireras = JiscoP ax Qn s a 9.11. Parseval’s Identities for Fourier Sine and Cosine Transform {K.U. 2011) eerie denote the Fourier cosines transforms of QOL. If F,(s) and G,(s) resp f(x)'and g (x) respectively, th ] ) de 2 7 F,(s):Ge(s) ds = [reece na 3 = {[pol? a Fear] 3 4 SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS, Proof. [ fix) giydy = [rvo| fre cow are} et x j J By use of inverse cosine transform| : 7 ; 2 how | J Ft 008 5x ala ® 0 0 (By changing the order of integration) " 2 aw Reds ™ 0 (H) Putting g(x) = f() in the result obtained in part (i), we have 2 Rie ds = Tray? = JiR ds = [treo ax, ™ 0 0 9.11.2. IfF, (s) and G,(s) respectively denote the Fourier sine transforms of f(x) and & (x) respectively, then Nw 2 Trwe,eds = [fe ge)de j 3 067% [or on? ds = [UpGo ax é 3 Proof. Left as an exercise for the students, SOLVED EXAMPLES / Example 1. Find the Fourier sine and cosine transforms of the function em", m>Oby fing its second derivative. Solution. Let fi) =e-™, m>0 KY 201 13 f'@)=-me-m and f(z) =me-m To find F, [f()] ie, F,(e-™*): We have Lf" Gl =—s? FFG +s (0) [Refer note after Theorem 3, Art. 9.8] ; F, (m® em) =— 52 B (em) 4.5 60 i mF, (e-") + s?F, (e-™) = 5 - | F(e-m can FOURIER TRANSFORMS Fo" Gos PRY £0) Feb em) wh Bom or Come) MIR (0-4 Kg ™=m |R(e-my. om] mea oa | my Dram A Brampe ne Using Parseval’s identity, prove the following dx x xidx x ie + 4 : a i (@ Parseval's identity for cosine transform is ——Seval's identity for cosine transform is 2 Tor ds = fIroor dx Taking f(x) =e-*, x50 FAG) = fe* cos sx de . é = pb eos ex osinsel? _ 9.35 [Refer note after Theorem 3, Art. 9.81 Roe cue IK.U. 2012) 4 [ Ay ft) wor wo vw = ars "4 f dx Gy gee? 4 (Changing the variable] IAL FUNCTIONS AND INTEGRAL TRANSFORMS ia = Jurors Taking fw’ 2 ‘we have fo‘ sin sede | é Fs) | a “Tes CO Te From (2), we have £ = fer)? de ot or 3 j = é =o 4 Replace sox Hence, dx a [Changing the variable] EXERCISE 9.4 | i, Evaluate . , t(1-cos x)? sin? x @ Jl 4) ae oy ards & { = “Gasp sin ax [was 2ab (a+b) a) 1855 é [ne Use Parseval's identity for sine and cosine transform of (f(s { : Ose<1 | eaet NDU 201% Using Parseval's identity, prove that x(a? +x?) [Hint. (@) Take f(2)=e-" and g(x)=e-b : 1, Oa ¢ fin Take f(x)=e™ and sore { : FOURIER TRANSFORMS identity show that fea \MD.U. 2008) . 0K x. 0 MDU oe é 4. rae {% L letes a ju, od Axbs a ‘®) the Fourier transform of f(x) be 28if ee 19-0, then prove that AY grax. convolution theorem for f(x) =g (x) = ¢ *? dy = 74 2 L Og o£ WW gp Ths rhnte s fe and Cosine Transform of f(x) _ Simm = O wn Definition. The finite Fourier sine transform of f(x) where 0 < 2. a bonded by F, (f@)} or 7,(s) and is defined as ; Fire) = 700 = J reersin 22 ae a where s is a positive integer. Function f (x) is called the inverse finite Fourier sine transform of f,(s) and is given as 7 =F EF} = Definition : The finite Fourier cosine transform of f(x) is defined as Fu) = Fe (FO) = [rene Ba where s is a positive integer or zero and inverse finite Fourier cosine transform of /,(s) is given as =F (Fw}=2 Ao+2 Fe =F (Fe)}=7 0+ ee Fits) cos 1A Above formulae are obtained from Fourier sine and cosine series. Students are advised to Note. remember these formulae. 9.38 SPECIAL FUNCTIONS AND INTEGRAL TRANSFOR45 SOLVED EXAMPLES O/cman 1. Find the finite Fourier sine and cosine transform of f (x) = 1 Solution. If range of x is not given, then we take the usual range [0,x]_ KU 2016 F,(s) = J feo sin é ieee 4 “cos (nx +8)=(-1)" cos6 sin(nx+6)=(-L)" sind f(s) 6 Fas) = ff) S28 ay 3 * = 1.cos xs dx Liam 3 - [= ‘| ° sinns) (sino ae = (7 —}-| 57] <0-0=0. Example 2. Find the finite sine transform of f(x) = 2x, where U

You might also like