Unit-4 Fourier Transform
Unit-4 Fourier Transform
Fourier Transform
1.1.   DIRICHLET’S CONDITION
A function f ( x ) is said to be satisfy the dirichlet’s condition in (a, b), if
(i) f ( x ) is defined and single valued function in (a, b)
(ii) f ( x ) and f ( x ) are sectionally (piecewise) continuous in (a, b).
1.2.   THE FOURIER TRANSFORM
The Fourier transform of f ( x),  x   is denoted by F f (x) or F(s),
and is defined as F  f ( x )  F ( s )                  1     
                                                                 f ( x )e dx where f ( x )
                                                                            isx
                                                           2
satisfies the dirichlet’s conditions in the interval (  , ). The function
F(s) is also called Complex Fourier transform of f(x).
1.2. THE INVERSE FOURIER TRANSFORM
The inverse Fourier transform of F(s), is denoted by f(x), and is defined
               1                  isx
as f ( x )          F ( s )e          dx.
               2
1.3. FOURIER SINE TRANSFORM
The Fourier Sine transform of f ( x ), 0  x   is denoted by Fs(s), and is
                                                2
defined as Fs{f(x)}  Fs(s)                      f(x)sin sx dx where   f ( x ) satisfies the
                                                π0
dirichlet’s conditions in the interval ( 0,  ).
1.4. THE INVERSE FOURIER SINE TRANSFORM
The inverse Fourier Sine transform of Fs(s) is denoted by f(x), and is
                         2
defined as f(x)           Fs(s) sin sx ds.
                         π0
1.5. FOURIER COSINE TRANSFORM
The Fourier Cosine transform of f ( x ), 0  x   is denoted by Fc(s) is
                                   2
defined as Fc{f(x)}  Fc(s)         f(x)cos sx dx where f ( x ) satisfies the
                                   π0
dirichlet’s conditions in the interval ( 0,  ).
1.6. THE INVERSE FOURIER COSINE TRANSFORM
The inverse Fourier Cosine transform of Fc(s) is denoted by f(x), and is
                           2
defined as f(x)             Fc(s) cos sx ds.
                           π0
                                                    93
1.7.    PROPERTIES OF FOURIER TRANSFORM
1. Linearity property: If F(s) and G(s) are Fourier transform of f(x) and
g(x) then F{C1f(x)+C2g(x)}=C1F(s)+C2G(s), where C1 and C2 are constants.
2. Shifting property: If F{f(x)}=F(s) then we have F{f(x-a) = eias F(s).
3. Change of Scale Property: If F(s) is the Fourier transform of f(x) then
1  s  is the Fourier transform of f(ax).
 F 
a a
4. Modulation theorem: If F{f(x)} = F(s) then we have
                       1
      F{f(x)cos ax}  [F(s  a)  F(s  a)]
                       2
5. Fourier transform of derivatives: If F{f(x)}=F(s) then                        we     have
        F{ f (x)}  isF ( s ) where f(x)  0 as x  .
In general, F{f ( n )(x)}  ( is )n F( s ).
6. Fourier integral representation of a function f(x)
(i) Fourier integral formula: Let f(x) be a function defined in   ,  
                                                     1
then Fourier integral formula is f(x)                   f(t)cos s(t  x)dt ds
                                                     π 0 
(ii) Fourier sine integral formula: Let f(x) be a function defined in 0, 
                                                             2 
then Fourier sine integral formula is               f(x)        f(t)sin st sin sx dt ds
                                                             π 00
(iii) Fourier cosine integral: Let f(x) be a function defined in 0,  then
                                                      2 
Fourier cosine integral formula is f(x)                  f(t)cos st cos sx dt ds
                                                      π 00
1.8.    CONVOLUTION THEOREM FOR FOURIER TRANSFORM
If F(s) and G(s) are the Fourier transform of f(x) and g(x), then we have
         F{f(x)g(x)}=F{f(x)}.F{g(x)}.
1.8.    APPLICATIONS OF FOURIER TRANSFORM
To solve partial differential equation through Fourier transform, first take
Fourier transform on both sides of differential equation and convert it in
ordinary differential equation. Then we take inverse Fourier transform on
both sides to obtain solution of the given differential equation.
Transform of Ist and 2nd order partial derivative with respect to x and t:
                                                        u 
(i) F  u   isF{u(x, t)}  isU(s, t)     (ii) Fs     sU s(s, t).
        x                                            x 
            u                                         2u 
(iii) Fc    sU c(s, t) 
                                2
                                   u( 0, t). (iv) F  2   (  is) 2U(s, t).
           x                 π                     x 
                                               94
          2u                               2
(v) Fs      2 
                  s 2U s(s, t)               su( 0, t).
         x                                 π
         2                                                                   u  
(vi) FC   u2   s 2U s(s, t)  2 u x( 0, t)               u x ( 0, t )       
        x                              π                                    x  x 0 
         u  dU(s,t)                                            u  dU s (s,t)
(vii) F                                            (viii) f s   
         t    dt                                               t          dt
          u  dU c(s, t)                                      2u  d 2
(ix) Fc 
                                                    (x) F  2   2 U(s, t)
         t     dt                                          t  dt
         2                                                     2u  d 2
(xi) Fs   u2   d 2 U s(s, t)
                     2
                                                      (xii) Fc  2   2 U c(s, t)
         t  dt                                               t  dt
                                    SOLVED PROBLEMS
                                              
                                              1  x x  1
                                                    2
    2 1                       1                   
            1 1                        
               ( 1  x ) cos sxdx  0
                         2
                                                          [using property of odd functions]
            2  1                      
                                           2                                     
                                                                  1
            2 1                                       2 sin sx     21
                ( 1  x 2
                             ) cos sxdx     ( 1  x  )            x sin sxdx
            2  0                                     s 0 s 0               
           2  2  cos sx  2 1 cos sx     2  2  cos s  2  sin sx  
                           1                                            1
            0   x            dx             0  2      
             s     s 0 s 0   s         s  s       s  s 0 
                                                   95
               1        
                                2 sin s  s cos s  isx 2   sin s  s cos s 
                   2.                          e ds                     (cos sx  i sin sx )ds
               2                     s 3
                                                                 s3        
        2    sin s  s cos s                 
                                                     sin s  s cos s          
                               cos sxds  i                     sin sxds
                  s 3
                                                        s 3
                                                                               
        2    sin s  s cos s              
                             cos sxds  0 [using property of an odd function]
                 s3                     
            4   sin s  s cos s 
f(x)                            cos sxds
             0        s3        
   
       sin s  s cos s                                                          x 1
                                            
                       cos sxds  f ( x )   4 ( 1  x ),
                                                       2
             s 3
                                 4                                                x 1
                                             0,
   0
                  
                    (sin s  s cos s )    s      1  3
Put x 
               1
                                     cos ds  1                                              s  x 
                                          2    4  4  16
                              3
               2  0         s
  
     x cos x  sin x   x         3
                    cos dx      .
  0                    
              3
            x               2        16
                                                
                                                x x  a
                                                  2
2  2 a 2  is  a is a 
                          ( e  e ias )           
                                                            1
                                                                 e isx             
                                                                                    a
                                                                                    a       
                   2  is                 is  is  a ( is )2
                                                                                            
                      
                   1  a 2 ias
                              ias 2  a ias ias
                       (e e )  (e  e ) 2 e e
                                                   1 ias ias
                                                                                                         
                   2  is          is  is        s                                                       
                   1  2a        2
                                   2                2             
                        sin as  2 ( 2 cos as )  3 ( 2 sin as )
                   2  s         s                s              
        
                   1 2
                                                     
                       s 3 a s  2 sin as  2as cos as 
                             2 2
                                                                          
                   2                                  
                            
          2  a s  2 sin as  2as cos as
F( s )   
                2 2
                                                                     
                       s3
                                                                 96
                                                                                                                        
                                                                                                                1                 isx
Now we have the inverse Fourier transform is f ( x )                                                                    F ( s )e ds
                                                                                                                2      
          
                  1       
                           e
                                isx
                                             
                                                                    
                                             2  a s  2 sin as  2as cos as
                                                   2 2
                                                                              ds
                                                                                                    
                   2                                    s3
                      
               1                                                  1
                      (cos sx  i sin sx )  s 3 [( a s  2 ) sin as  2as cos as ].ds
                                                       2 2
 
      
              1 
                                                   cos sx
                    ( a s  2 ) sin as  2as cos as s 3 ds
               
                        2 2
                                                                                   
  
          
              1  2 2
                                                   cos sx     
                                                                          
                    ( a s  2 ) sin as  2as cos as s 3 ds  0 [using pro. of odd function]
                                                          
      
                                   
              2  cos sx a 2 s 2  2 sin as  2as cos s                          ds
                                                                                     
               0                   s3                                                
     
                                           
        cos sx a 2 s 2  2 sin as  2as cos as as 
                                                  f(x)
                                                                               
                           s3                    2
      0
                                   xa 
                                        x x  a
                                         2 2
                    x 2                                                                                          a
                                     2                                                          Put x 
                  2
                   0              xa  0   xa                                                                    2
                                       
                                       
             as  a s  2 sin as  2as cos as as
                   2 2
                                                     
                                                       a   a 2                                            2
Hence          cos 2                           ds             .
              0               s3                     2 2    8
Pr.3. Find the Fourier sine and cosine transform of f(x), where
        1, 0  x  a
 f(x)               .                                      (RTU 2007)
        0,    xa
Sol. We know that the Fourier sine transform of f(x) is
                       2                                         2a
  Fs ( s )             f ( x ) sin sx dx 
                      0
                                              1. sin sx dx                                         [by def. of f(x)]
                                             0
                                                 a
                    2   cos sx    2  1  cos ax 
                                               .
                      s 0                s     
Now using the definition of Fourier cosine transform we have
                      2                                          2a                           2  sin sx 
                                                                                                            a
                                                                                                              2  sin as 
FC ( s )                   f ( x ) cos sx dx                        1. cos sx dx                                .
                          0                                         0                          s 0        s 
                                                                                     s
Pr.4. Find f(x) if its sine transform is                                                 .                              (RTU 2007)
                                                                                   1 s2
                                                                              97
                             s
Sol. Given that Fs ( s ) 
                          1  s2
Using the definition of inverse Fourier transform, we have
              2                                 2  s sin sx             2 1 (1  s 2  1 )
f(x)           F ( s ) sin sx ds    1  s 2 ds                                        sin sx ds
              0 s                     0                                   0 s( 1  s 2 )
              2  sin sx      2  sin sx
                       ds                  ds
               0 s            0 s( 1  s 2 )
              2   2  sin sx                                                     sin sxds  
                                ds                                                     
               2   0 s( 1  s 2 )                                              0     s    2
                           2  sin sx
f(x)                                     ds                                                           ….(1)
              2              0 s( 1  s 2 )
                                                                df    2  s cos sx
Differentiating with respect to x, we get                                          ds                 ….(2)
                                                                dx     0 s( 1  s 2 )
Again differentiating with respect to x, we get
d2 f   2  s sin sx                                                                                 d
                   ds  f                 or      ( D2 1) f  0                where D                 ….(3)
dx 2
        0 (1  s 2 )                                                                               dx
                                                                 df
Solution of (3) is               f  Aex  Be  x and                Aex  Be  x                        …..(4)
                                                                 dx
                                                                      
                 and df   2  ds 2   2 tan1 s 0   2 .              
                                                  
At x = 0,               
              f 
              2      dx      0 1 s                     2          2
[from (1) and (2)]
                                                        
At x = 0,                    A B      and                   A B                          [from (4)]
                     2                                   2
                  2   1                     2
                                                                 2          1       2
                                                                                                           
                     f ( x ) sin sx dx   f ( x ) sin sxdx      x sin sx dx   ( 2  x ) sin sx dx
                   0                      1                     0                1                    
                                                         98
                  2   x cos sx sin sx            cos sx sin sx  
                                          1                          2
                               2    ( 2  x )        2  
                        s       s 0               s      s 1 
                             2   ( 2  x )        2  
                    s         s 0             s      s 1 
Replacing s by                   , we get   Fc ( s ) 
                                                          2
                                                            f ( x ) cos  x dx 
                                                                                        2
                                                                                            e  .
                                                             0                         
                        2  2            2  
Now f ( x )                e cos  x d   e cos  x d
                           0                           0
               2  e                                                                                   
                         cos x   sin x                                e ax
                                                            e cos bx dx  a 2  b 2 (a cos bx  b sin bx
                                                                ax
                1   2
                                                                                                         
                  2     1            2
                     0
                    1  2    1  2  .
Pr.6. (ii) Find the Fourier integral representation of f(x) where
                                                          99
                                    0,       x0
                                   1                                                    (RTU 2007)
                            f ( x ) ,        x0
                                    2 x     x0
                                   e ,
Sol. Using the definition of f(x), we have f ( x )  1    f ( t ) cos( t  x )dt  ds
                                                          
                                                      0                        
             1                                  1   1                  
                 f ( t ) cos s( t  x )dt ds       e cos s( t  x )dt ds
              0 0                                 0 0                     
                                                               
           1   e 1                                              1
                      cos( t  x )  s sin s( t  x )  .ds     
                                                                           1
                                                                                cos sx  s sin sxds
            0 1  s 2
                                                           0        0 1  s2
Hence f ( x )  1  (cos sx  s sin sx ds.
                  
                 0       1  s2
Pr.7. Find the function f(x) satisfying the integral equation
                           1  s , 0  s  1
      0 f(x)cos sx dx   0,           s 1
                                                    (RTU 2010, 12)
                            
Sol. Using definition of Fourier cosine transform we have
                       2                         2 1  s ,       0  s 1
     FC (s)             f(x)cos sx dx            
                       π0                         π  0,            s 1
Using inverse Fourier cosine transform, we have
           2                    2 1                     
                                                                            
    f(x)    FC (s) cos sx ds      FC (s) cos sx ds   FC (s) cos sx ds
           π0                    π 0                     1                 
                   2 1 2                          2
                                                                                     1
                                                                 sin sx cos sx 
                         ( 1  s) cos sx dx  0  ( 1  s )       
                   π  0 π                        π            x      x 2  0
          2  1 cos sx      2                  4        x
                              ( 1  cos x)  2 sin 2  .
          π  x 2   x 2  πx 2               πx       2
Pr.8. Find the Fourier sine transform of f ( x )  e  x , x  0. Also show
          x sin mx     
that               dx  e m , m  0.                                               (RTU 2007, 10)
       0    x 1
              2
                        2
Sol. Using the definition of Fourier sine transform we have
                2                            2  x
Fs ( s )         f ( x ) sin sx dx            e sin sx dx
                  0                             0
               2  e x                            2                      2 s 
                           sin sx  s cos sx    0  1  s 2  s     1  s 2 
                                                              1
                
                1  s 2
                                                                                     
Now using the definition of inverse Fourier sine transform we have
                       2                             2 2 s 
     f(x)               F ( s ) sin sx ds                        sin sx ds
                       0 s                            0   1  s2 
                                                        100
                    2  s sin sx                        s sin sx              
or f ( x )           
                     0 1  s2
                                 ds                             ds  f ( x )  e  x                 x  m
                                                     0   1  s2       2         2
          
                                 
           1  s 2 ds  2 e s  x .                              Hence  x sin mxdx   e  m .
              s sin ms      m                                                   
 or
          0                                                                      0
                                                                                  2
                                                                                      1 x              2
Pr.9. Prove that (i) F  f ( x )   2 f ( 0 )  s 2 F  f ( x )
                      C
                                                         C
                                 
Sol. (i) FC  f ( x )  2  f ( x ) cos xdx
                                        0
          2
                  ( x ) cos sx0  s  f ( x ) sin sxdx 
                                      
              f
                                    0
                                                           
      
              2
                  [ 0  f ( 0 )]  s
                                              2
                                                f ( x ) sin sx dx                     f ( x )  0 as x  
                                               0
              2                                           2
                 f ( 0 )  sFs { f ( x )}                f ( 0 )  s [  sFC { f ( x )}]
                                                         
Hence FC { f ( x )}   2 f ( 0 )  s 2 FC { f ( x )}.
                                     
                                 
                                                                     2
                                                                             ( x ) sin sx0  s  f ( x ) cos sxdx
                             2                                                                   
(ii) Fs { f ( x )}              f ( x ) sin sxds                    f
                                0                                                             0
                                                                                                                     
                            2      
                                                               2
                             0  s  f ( x ) cos sxdx   s   f ( x ) cos sxds
                                   0                         0
                                               2                                           2
                       sFC { f ( x )}  s    f ( 0 )  sFs { f ( x )}                     sf ( 0 )  s 2 F { f ( x )}.
                                                            s
                                                                          
Pr.10. Use the method of Fourier integral to determine the
displacement u(x, t) of an infinite string, given that the string in
initially at rest and that the initial displacement is f ( x),  x   .
Show that the solution can also be put in the form
                      1
          u( x , t )  [ f ( x  Ct )  f ( x  Ct )]. (RTU 2007, 10)
                      2
Sol. The displacement u(x, t) is governed by two dimensional wave
                            2u      2  u
                                        2
equation, so we have              C        ,  x  ,t  0                                                     ….(1)
                            t 2       x 2
Subject to boundary condition:
(i) u(x, 0) = initial displacement = f(x)                                                                         …..(2)
     u
(ii)     0 at t = 0                         [becouse string is initially at rest]                                ……(3)
     t
                                                               101
Taking Fourier transform of (1), we have
       2U                                 2U                            2U
            C 2 ( is )2 U ( s , t )         C 2 s 2U                    C 2 s 2U  0
       t 2
                                          t 2                           t 2
Hence solution is U ( s ,t )  A cos Cst  B sin Cst                                   …..(4)
    dU                                                                  ….(5)
        ACs sin Cst  BCs cos Cst
    dt
From equation (2), we have u(x, 0) = f(x)  U ( x ,0 )  F { f ( x )}  F ( s ).
From equation (2), we have (t = 0), A = F(s)
From equation (3), we have  u   0 
                                                             d u( s ,0 )
                                                                         0
                             t  t 0                         dt
                                             102
Substituting the value of C in (3), we have
                         
                    1 a 
                              cot 1   tan 1 x .
                                    a
 f(x)         tan     
            22        x   2       x  2        a
              u        2u
Pr.12. Solve       C 2 2 ,t  0 subject to u( x ,0 )  f ( x ),  x  
              t       t
                                                              (RTU 2007)
Sol. Given that the domain x is  ,  , so we use Fourier transform.
Taking Fourier transform on both sides of u  C 2  u
                                                    2
                                          t       t 2
   u        u 
                  2
F    C 2 F  2   dU  C 2 s 2U or
                                                  dU
                                                         C 2 s 2U  0
    
   t         x     dt                         dt
                                           2s 2t
The solution is U ( s ,t )  Ae C                                                            ….(1)
Given also u( x ,0 )  f ( x )  U ( s ,0 )  F ( s ) [using Fourier transform]
Put t = 0 in (1), we get A=F(s). Then by (1), we have
                                                     2s 2t
Using this in (i) U ( s ,t )  F ( s )e C
             t x                                                 
                                    x                             0 ,    x 1
u(x, t) is bounded and x > 0, t > 0.          (RTU 2007, 11, 12)
                   u
Sol. Given that   so we use Fourier cosine transform. Taking
                  x  x0
                                                        u  2 u                      u      2u 
Fourier transform on both sides of                                              FC    FC  2 
                                                        t   x 2                     t     x 
                                                     103
               2  sin s cos s 1 
                        2  2                                                                 .…(2)
               π  s      s   s 
                        
                     π 0 π s        s2 
                                           e cos sxds
                     2   s sin s  cos -1   s 2t
  u(x,t)                                e cos sxds.
                     π 0        s2         
Pr.14. Using Fourier sine transform solve the partial differential
             u  2u
equation             , x  0,t  0 . Subject to the conditions u(0, t) = 0.
             t x 2
           1,   0  x  1 It may be assumed that u(x, t) is bounded;
u(x, 0 )                 .
           0 ,    x 1
                   u
also u and            approach zero as x   .                                      (RTU 2010, 11)
                   x
Sol. Given that u   u
                      2
                t x 2
                                                                                     u      2u 
Taking Fourier sine transform of both sides, we get                              Fs    Fs  2 
                                                                                     t      x 
       dU s   2                                                             dU s
                su( 0,t )  s 2U s  s U s
                                       2
or                                                            or                 s 2U s  0
        dt                                                                  dt
                                            2t
The solution is U s ( s ,t )  Ae s                                                            ….(1)
At t = 0, becomes U s ( s ,0 )  A              2  1  cos s 
                                                               A
                                                  s 
                     2  1  cos s   s 2t
From (1) U s ( s , t ) 
                                  e
                      s 
Taking inverse Fourier sine transform, we get
                                                 104
                        2   1  cos s          s t 2  sin sx s t  
                                                                           cos s sin sx s t 
u( x ,t ) 
                                                         2
                                        sin sx e dx          e ds  
                                                                                  2                     2
                                                                                      e ds
                         0 s                         0 s            0      s            
                                                2
                                  u( x ,t )        [ I1  I 2 ]                                      ….(2)
                                                
         
                                 ds                                                      dv
I1   e  s t sin sx                 put s t  v  s t  v  ds 
                2                               2            2
         0                        s                                                       t
     
                v  t dv  v2  xv  dv
I1   e v sin  x      e sin                                         or I1   erf  x 
           2
     0           t  v t   0        t t                                              2      2 t 
                    
                                                ds 1 
                                                     sin( x  1 )s  sin( x  1 )s e s t
                                                                                           2 ds
and I 2   cos s sin s x e s t
                                           2
                    0                            s  20                                        s
                                                                 dv
Put s 2t  v 2  s t  v  ds 
                                                                  t
         1   v    x 1              x  1   t dv
I2          e sin    v  e v sin      v
                         2                          2
2  0  t   t   v t
         1   v       x  1   dv  v      x  1   dv
             e sin       v                 v 
                             2                                        2
         2  0                         e sin
                       t   v        0         t   v
             1      x 1        x  1 
               erf       erf       
             2  2    t     2      t 
                                                    2      x               x 1         x  1 
From (2), we have u( x ,t )                           erf               erf    erf       
                                                      2   2 t           4 2 t            2 t  
                               x  1   x 1        x  1 
or            u( x ,t )  erf       erf    erf         .
                              2 t  2  2 t         2 t 
                                                                 u       2u
Pr.15. Solve the heat equation                                       C 2 2 ,  x  , t  0
                                                                 t      x
Subject to u(x, 0) = f(x), where f ( x )  u0 , x  a                                  (RTU 2010)
                                             0, x  a
Sol. Given that the u  C 2  u
                              2
                    t       x 2
Here the domain of x is                         ,  so we use Fourier transform.
                                                  u         2u 
Taking Fourier transform of both sides, we get F    C 2 F  2 
                                                  t        x 
                                                                  105
dU
 dt
              
     C 2  s 2U            
                         [where U  U ( s ,t ) and F { u( x ,t )}  U ( s ,t )]
                                                             C 2 s 2t
                C 2 s 2U  0 on solving U ( x ,t )  Ae
or        dU                                                                                                  ….(1)
          dt
                                  u0 , x  a
Given that u( x ,0 )  f ( x )  
                                 
                                  0, x  a
Taking Fourier transform, we have
                                                                                                         
                                                                                 a
                                u0 a isx          u0  e isx   u0 e ias  e ias
      U ( s, 0 )                       0
                                        u  e dx      
                                2 a a          2  is  a is 2
                              u0              2                                                               ….(2)
      U( s, 0 )                  .2 sin as    ( u0 sin as )
                             s 2             
                                                           2        sin as
Using (1) and (2), we get A                                   u0
                                                                      s
                   
                s
                           .e
                                                 
           2u  e C s t
                                        2 2
u( x ,t )  0           [sin( a  x )s  sin( a  x )s ] ds
             0 2s
              u0  e  C s t
                                2 2
                           [sin( a  x )s  sin( a  x )s ] ds
               0 s
Put C 2 s 2t  v 2  Cs t  v  ds  dv
                                                               C t
                            e v             ( a  x )v         a  x   dv
                                    2
                      
              u0
u( x ,t )               sin                              sin      v
               0 v / C t    C t                                C t   C t
              u0 
                   v     ( a  x )v  v    ax    dv                                                 …(3)
                                       e sin    v 
                                    2                          2
                   e sin
                0         C t      0       C t   dt 
          
             t               b               
           e cos 2btdt  2 e
                   2                                  2
Since
          0
                                                                    106
                                                              C/2
                                        C/2 x
            2  sin 2bt                                            x        2
       e t                                   dt               b
                                                                  e db
       0        2b  0                                      2   0
     
                sin Ct x        2                              C/2 
  e t                 dt                                                b
           2                                                                       2
                               .  .                                       e db
     0              2t        2 2                                       0
     
               sin( Ct / x )          C 
  e t                     dt  erf                                                                              …..(4)
           2
     0               t           2     2 x 
                                                                     u0      ax                   ax               
Using (4) and (5), we get u( x ,t )                                     erf                 erf                   
                                                                       2     2C t            2      2C t              
or                             u0     ax          ax                        
               u( x , t )          erf      erf                              .
                               2      2C t         2C t                       
                                                                                                  t          t
                                                                                                  
the conditions; (i)   0 , when t  0, x  0 (ii)                                                                    (constant
                                                                                                  t
                                                                                              
when x=0 and (t>0). Assume that                                               ( x, t ) and      both tend to zero
                                                                                              x
as   x  .                                                                                                       (RTU 2009)
                                                         2
Sol.: Given that the                             C2 2
                                             t     t
Taking Fourier cosine transform of both sides, we get F                                                             2 
                                                                                                              C FC  2 
                                                                                                                  2
                                                                                                                      x 
                                                                                                       C
                                                                                                            t
or d  C   2 C 2                                s 2C 2  C                       [where            C   C ( s ,t ) ]
          dt                            x  x0
     C                                  2
           s 2C 2  C                     C 2 This is a linear differential equation
     dt                                  
I .F .  e 
                s2C 2dt
                           es C t
                                2   2
                                                                                                        es C t 
                                                                                                              2    2
                                                         2                                    2
The solution is  C e
                                        s 2c 2t
                                                           C e2 s 2C 2t
                                                                              dt  A             C 2    2 2
                                                                                                                  A
                                                                                                      s C 
                  2c 2t         2  s2C 2t
  C es                            e     A                                                                              …..(1)
                                 s2
Given also  x , 0  0   C  ( s , 0 )  0 [using Fourier cosine transform]
                                                                              2       2 
At t=0, by equation (1), we have 0                                            .  A  .
                                                                               s2      s 2e
                                                                     107
                               2 
From (1), we have  C          . ( 1  e s C t )
                                               2   2
                                s2
Now using inverse Fourier transform we have
           2  2  ( 1  e e )          2 
                               s 2C 2t
                                                           s 2C 2t cos sx
   ( x ,t ) 
                             cos sxds     ( 1  e e        ) 2 ds.
              0       s 2
                                           0                      s
              
Pr.17. Using Fourier transform, show that the solution of the partial
              equation  u  C 2  u ,    x  , t  0 Satisfying the
                              2        2
differential
                            t  2
                                     x 2
                           u
conditions (i) u  f ( x ), 2  0 at t = 0 (ii) u( x ,t ), u , both tend to zero
                           t                              x
                                                    
as x   can be written in the form u( x , t )  1  F ( s ) cos C st e isx ds
                                                  2 
where F(s) = Fourier transform of f(x).                       (RTU 2009)
                  2u     2  u
                             2
Sol. Given that        C
                 t 2       x 2
Taking Fourier transform of both sides, we get
               2u       2u 
           F  2   C2F  2 
              t        x 
      d 2U                d 2U
            C 2 2
                  s U or         C 2 s 2U  0
      dt 2                 dt 2
Solving U ( s ,t ) = Acos Cst + Bsin Cst                                  ….(1)
Given condition u( x ,0 )  f ( x )
Taking Fourier transform, we get. u( s ,0 )  F ( s )                    …..(2)
            u( x ,0 )     U ( s ,0 )
and                    0             0                                 .…(3)
               t             t
Using (1) and (2), we get A  F( s )
Now differentiating (1) with respect to t, we get
dU
    ( s ,t )   ACs sin Cst  BCs sin Cst  0  Bcs  B  0        [using (3)]
 dt
Now from (1), we have U ( s ,t )  F ( s ) cos Cst
                                      
Taking inverse Laplace u( x ,t )  1  F ( s ) cos Cst e isx ds.
                                    2 
Pr.18. Solve the boundary value problem u  K  u , u( 0,t )  u0 , t  0
                                                           2
                                                    t    x 2
                                       u
given u( x , 0 )  0, x  0 also u and    approach to zero x   . (RTU 2007)
                                       x
                                         108
Sol. Given that the u  K  u
                             2
                     t     x 2
Taking Fourier sine transform on both sides, we get
                     u       2u 
                 Fs    KFs  2 
                     kdt     x 
        dU s     2                    
               K   su( 0,t )  s 2U s 
          dt                          
               2               
            K   su 0  s 2U s 
                              
         dU s                  2
or             s 2 KU s  K     su 0
          dt                  
This is a linear differential equation.
I .F .  e 
               s 2 Kdh
                          e s Kt
                              2
                                                                                                     2
                                  2 Kt                 2             2                     2 e s Kt
The solution is U s e s                  K               su 0 e s Kt dt  C1  Ksu0                C1
                                                                                           s2K
                            u0           2                 2 Kt
       U s ( s ,t )                         C1e s                                                    ….(1)
                             s        
Given u(x, 0) = 0                           U s ( s, 0 )  0                [Using Fourier sine transform]
                                                                                                u0       2
At t = 0, (1) becomes C1  u0                              2
                                                                   U s ( s ,0 )  0  C1  
                                                  s                                             s       
         u( x , t ) 
                     0 
                             2 2
                              
                                          2
                                              
                                  1  e s Kt sin sx ds        
or
                     2u           2
          u( x ,t )  0  1  e  s Kt
                       0
                                       sin x
                                         s
                                             
                                             ds                
or u( x , t ) 
                   2u0  sin sx      
                                           s 2 Kt sin sx      2u0     e s Kt sin sx ds           2
                                ds   e                 ds    2 0                     
                      0 s          0              s                                 s      
Hence u( x , t )  u0 1 
                                             2   
                                                        s 2 Kt    sin sx 
                                                 e                     ds .
                                                0                  s     
                                                                   109
                                      EXERCISE 1.1
                                     ANSWERS 1.1
                                                                                   s
Q.1. i        2
                 as cos sa  sin sa . Q.2.     2   1
                                                             .   Q.3.   2
                                                                            tan 1  .
     s2                                           1  s2                        a
                              2 s t2
Q.5.        e  x . Q.6. 2  se        sin sx
                                              ds.
          2                    0   1 s2
110