0% found this document useful (0 votes)
9 views20 pages

FT 3 3

The document discusses the Fourier Transform and its properties, including various examples and proofs related to Fourier sine and cosine transformations. It also covers the Convolution Theorem and Parseval's Identity, providing definitions and mathematical formulations. Additionally, it presents problems and solutions to illustrate the application of these concepts in engineering mathematics.

Uploaded by

Anup Doddamani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
9 views20 pages

FT 3 3

The document discusses the Fourier Transform and its properties, including various examples and proofs related to Fourier sine and cosine transformations. It also covers the Convolution Theorem and Parseval's Identity, providing definitions and mathematical formulations. Additionally, it presents problems and solutions to illustrate the application of these concepts in engineering mathematics.

Uploaded by

Anup Doddamani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

E

8 8 e8

8
FOURIER TRANSFORM
2.83

cos (s + a) x + cos (s a) x] dr
0

S)cos (s +a)xdr +V} Sfx) cos (s -a)xde


0 0

=
Fe 6 +a) + Fe (-a)

(qi) F S C)
sin a r ] =
VË Jfx) sin ax cos sx dr
0

[sin (a + s) x + sin (a s)x]dr


-

V fa) sin (a +5) xdr +V? Sf) sin (a - s)x dr|


0

-Fa+) +F,(a -s) 1


()F.LfG) cos ar] = V£ Sf) cosaxcossx dr

V S) cos sr cos ar dr

V cos (s + a) x + cos
(s-a)x ]dr

V Jfx) cos (s + a)xdr+ \ Sf) cos (s a)x dr| -

IF(6 +a) Fe (6 a) 1
+ -
2.84 ENGINEERING MATHEMATIcs

3.FI(ax)1 = :

Proof: F IS(ar)] Js (ax) sin sr dr

put ar = x 0 0D
a dr =dt

- VIro sin

a V ro sia 0

Similarly Fe Lf (ax)] =

Fe
4. F, [f' (x)] =
-s Fe (s), if f(x) > 0 as
x co.

Proof: F.S')I =

Vron dx

-V sin sx d |f «)|

V (sin sxf )-sSfa) cos sx de1


Sfx) cos sx dr |Assuning
(¢)-0 as x>
»|
=-s Fe (s)
ANSFORM
2.85
o U R I E R T R A N

V?..
=
- f()+s F, (s) if f(x) --0 as x

FIf

F. 1f
}
=

VË Js'(x) cos sx dr
Proof:

d [f () ]|
V cos sx

cos sxf() b +sJf«) sin sx dr ]


0

VE [0-f(0)]+s F,() Assuming ft)-0 as x -

f0) + s F, (G)

&F, xt(1
=
- F . ()1
OS

Proof We know that

F. If) = VSf) cos sxdr

Diferentiating both sides w.r.to s

FAS)=V Sfe) cos sx dr

a (cos sx) dr

- f«) (-xsin sx) dr


2.86 ENGINEERING MATHEMATICs

- VF SS)x sin sx de
0

-F, Ixf)]

(i.c..) F, [xf)1 = F.1)

7. F xt) =
E,)
Proof We know that

F)] -V f) sin sx dx
Differentiating both sides w.r.to s we get

ds
fe) sin sx de
0

V Is (sinsa) d
=
So) cos sx (x) dx
0

Sx) x cos sx dr

= Fekf )

i.c., Fe kS)) =
F
as UN
FOURIER TRANSFORM
2.87

IX PROBLEMS BASED ON PROPERTIES OF F.T, F.C.T AND


F.S.T.
Example 2.4.1: Find the Fourier sine and cosine transformations
of xe

Solution: (G) We know that F, Ixf¢)] = F. 1S)]


ds

Vl FIe* ] =V.
- V

-V
-V (+a
2as

() We know that Fe lxf)] =

F, f)1
ds

Sol. F.[xe" = - F , I"]


ds

- -V2+d0-s(2
(G+a2
= - V2+-22
2.88 ENGINEERING MATHEMATICs

Example 2.4.2: Find Fourier cosine transform of e * and hence

find F, [xea*]. [A.U. N/D 2006]

Solution : See Example 2.3 a(14)

Fea = /43

Now F, Ixe*)- Fds i

es/4a
2
4a
e-s/4a
s43

22a3

transform of e" and hence deduce


Example 24.3: Find Fourier
2as
that () F [xea |xl =
VT (s+a22
cos xt d
=e-a /x|
2007]
oa24?
[A.U. Oct.2001, M/J

Solution: We know that

FIf)

1
2.
FOURIER TRANSFORM
2.89

V27T ea (cos sx + isin sx) dr

1
V27T 2eax
0
cos sx dr

Since ea 1x cos sx is an even function

eax cos sx dx =
2Je cos sx d
0

ea x sin sx is an odd function

Ceaxsinsx dx = 0

V 0
ax cos sx dx

by formula Se a* cos bx dr =

a+b
Using inversion formula we get

1
V F If«)] e ds

1 SX ds

V27 s2+2

V
2.90 ENGINEERING MATHEMATICSs

-
cOs sr- i sin sx ds

-P
cos Sx
Since 1 5 an even function.

COS SX
f ds =
2 f
COS SX

+a2

Sin sr
i s an odd function.

sin S ds =0

f) f COs sx
ds
os+2

COs x
dt=ea x|[: s is
dummy variable]
F [xea k] =
-i F )

ds
FOURIER TRANSFORM
2.91

-iaV 0-2s
+a

-N +
2as

Example 2.4.4: Find the Fourier sine transform of e a and hence


ax
find the Fourier cosine transform of

Solution: We know that

F,f6)]-V? Is9sinsd 0

-ax
sin ax dx

-V : Ssinbx d
0
=

To find Fe [xe]

-[ V
2.92 ENGINEERING MATHEMATICS

VE )-1

V -

V
Example 2.4.5:Find the Fourier transform of e* and hence find
the Fourier transform of e cos 2x

Solation: We know that F


[f)] =

S)E dr

F =

S de

2Se (cos sx + i sin sx) dr


1 00
VTSe cossx dx +-
Sesin sx dr
2
ecos sx dr +0
Since e cos sx is an even function.
e sin sx is an odd function.
FOURIER TRANSFORM
2.93

F () V S"cos
0
.sx dx

V :e"cos bx dk +
a

To find F [elcos 2

By Modulation theorem,

Ff)cosa) ; =
[F (6-a)+ F
(s+a)]

FIel cos2x]=5 1
(6+2)+1
1 1
|2-4s +5 s+45+ 5
+ 4+5+s-45 +5
V27
+5-(4
2+5)
V27T4 10s+25- 16s
=
+5

A-6s+25
2.5 CONVOLUTION THEOREM- PARSEVAL'S IDENTITY
2.5.1 Definition: Convolution
The convolution of two functions f ) and g (1) is defined as

8 ) SO8-1) dt.
2T
2.94 ENGINEERING MATHEMATICs
2.5.2 Convolution Theorem:
The Fourier ansform of the convolution of f(x) and g ) is the

product of their Fourier transforms. [AU Trichy ND 2009


(i.e.) F Lf) *s)] =
F () G 6) =
F [f] F ls()]
Proof: We know that F [f)] = S f )e dr

Ff)*8) ] =
Ss)*g )] d

27

- ros-9aa
by changing the order of integration we get

SfOs -) ad
c

1
V2Tf() Fls-)] dt
1
VSf)" G ()dt

by shifting property Ff*-a)] = e s F ( )


rOURIER TRANSFORM
2.95

- G () F (6) =
F (6) G (6)

Note FF () G ) =f)*8)
-

FF )] F [G (6)]
25.3 PARSEVAL'S IDENTITY
IfF () is the Fourier transform of f(x). Then

S1fdr = S | F(¢) |ds


- 00

[A.U. CBT Dec. 2008]


Proof: By convolution theorem

F f ) * s ) ] = F (). G ()

fo)*8) = F[F (6). G ()]

S08-)dt = F) G 6)»
ds (1)
putI=0 and g(-1) =
f) there it follows that
G ) =
F()

(0)Sf)() d = f F() F() ds

Note: In the same


way we can prove Parseval's identity for Fourier
Since and
cosine
transforms.
Ff)] F, I and =

F. l8 )] =
Fe («) then
2.96 ENGINEERING MATHEMATICS
00

SIs) |*dr =
f
b
IF ()|ds and
0

(i) S I s ) |*dt = f IFe()ds.


0 0

Problems based on Convolution theorem and Parseval's


X.
identity
Example 2.5.1 Find the Fourier transform of

- t
if xl 2where
a
a
is a positive real number.

Hence deduce that (i) in at= and (i) dt=


[A.U. March, 1996] [A.U N/D 2007, A/M 2008]

Solution : The given function can be written as

if <x < a
10 otherwise -a

fo)

F(s)= F f«)]: Sf)e d


-00

1
- de
V27t -a

1as e ias
1
V2 Tt IS

ea elas
1 2i sin as . s i n ax =
2
V2 is

F() V2 sinas .(1)

Fourier inversion formula we have


(i) Now, by

S)= V22SFo)e-ixds
OURIER TRANSFORM
2.07

sin as
(cos sx- i sin x) ds using (1)1
Sinas Sin as
cos sx ds-T sin sx ds
S

c o scos sx d s 0 ) sin as sin sx is an odd function in s]

cos srds :i cos sx is an cven function in s

sin &s cos sx ds S ) . (2)

putting , we get J ds
S
0

Now, put = as. Then we have s =and ds


ds =

Further 0 as s 0 and t o as s > 0o

Gi) Using Parseval's identity S Isc)|*d« =


S |F()12s
2

We get 1d Sinas ds
S

2
ds

2
Sin as
ds= a n

Putting t= as we ge
2.98 ENGINEERING MATHEMATIcs

sindt
a

2SSdt =: is an even function]

dt

Example 25.2 Find the Fourier Transform of

Hence deduce that


Oif ixi >1
1

-
[AU. April, 2001, May, 2001]
[AU. A/M 2005, N/D 2005, M/J 2006, N/D 2007, CBT Dec.
2008]
[A.U N/D 2009]
Solution: Given f() = * l , -1<x<1
,X<-1 and x >1
Tne Fourier transform of f) is

F)

S(1 -

|x|) (cos sx +i sin sx) dx

V2T -1 (1 l) cos sx de + S(1 -

xl) sin sr de
-1

S (1- |xl) cos sx dr +0


-1 [ (1- Jx|) sin sx is odd
FOURIER TRANSFORM
2.99

( x ) cosstde . (1- x|) cossx is even]


[As x>0, Ixl =x ]

Va--- cos sx

va- Sin COS Sx


0

.V[o5 -
V cosS

-V -COS S|

(1-coss
Hence IFC)2 -

Using Parseval's identity S |F()|* ds =


S |(x)1
-00
dx
00

we have
-cos s ds - S(1-xl)
-1

=
2S(1 -

x) d
asx>0, rl =x
]|
[ 1 -rl is even]
2.100
ENGINEERING MATHEM
3 0
-[0-
2
-10-1
00 Sin
COS s ds
2

0
as
- 00

ds

co Sin
ds put 2=s

sin'! (2dt) 2424 dt d s


o (2)
2 d t = ds

Example 2.53: Show that the Fourier transform of

)= a-1, |x| <a sin as a s cos as


|0, V
Hence deduce that ( Sint-tcost
dt==Using Parseval's
identity show that sint- tcos t
0 dts
A.U. March 196, Nov. 2001, A/M 2004]|[AU. N/D 2008, A/M 2009

Solution: Proof: We know that


F O U R I E R T R A N S F O R M

2.101

0 + S (a*-x)e dr +0 -a

5x

-(-2x)
27

27 S is -a

0+2 2-a
1
0- is is
2 a es a

+
2e1sa 2ae 2 isa
s i
2 a ei s a e i s a

1 2ae'sa
2iesa
V27 s
1 -3-")
1 12 cosas]+sin as
V27
V27T
t e I X
-ix
- sin r =

. cosx =

2
,
2

1 -4as cos as + 4 sinas


V2T

You might also like