E
8 8 e8
8
FOURIER TRANSFORM
2.83
cos (s + a) x + cos (s a) x] dr
0
S)cos (s +a)xdr +V} Sfx) cos (s -a)xde
0 0
=
Fe 6 +a) + Fe (-a)
(qi) F S C)
sin a r ] =
VË Jfx) sin ax cos sx dr
0
[sin (a + s) x + sin (a s)x]dr
-
V fa) sin (a +5) xdr +V? Sf) sin (a - s)x dr|
0
-Fa+) +F,(a -s) 1
()F.LfG) cos ar] = V£ Sf) cosaxcossx dr
V S) cos sr cos ar dr
V cos (s + a) x + cos
(s-a)x ]dr
V Jfx) cos (s + a)xdr+ \ Sf) cos (s a)x dr| -
IF(6 +a) Fe (6 a) 1
+ -
2.84 ENGINEERING MATHEMATIcs
3.FI(ax)1 = :
Proof: F IS(ar)] Js (ax) sin sr dr
put ar = x 0 0D
a dr =dt
- VIro sin
a V ro sia 0
Similarly Fe Lf (ax)] =
Fe
4. F, [f' (x)] =
-s Fe (s), if f(x) > 0 as
x co.
Proof: F.S')I =
Vron dx
-V sin sx d |f «)|
V (sin sxf )-sSfa) cos sx de1
Sfx) cos sx dr |Assuning
(¢)-0 as x>
»|
=-s Fe (s)
ANSFORM
2.85
o U R I E R T R A N
V?..
=
- f()+s F, (s) if f(x) --0 as x
FIf
F. 1f
}
=
VË Js'(x) cos sx dr
Proof:
d [f () ]|
V cos sx
cos sxf() b +sJf«) sin sx dr ]
0
VE [0-f(0)]+s F,() Assuming ft)-0 as x -
f0) + s F, (G)
&F, xt(1
=
- F . ()1
OS
Proof We know that
F. If) = VSf) cos sxdr
Diferentiating both sides w.r.to s
FAS)=V Sfe) cos sx dr
a (cos sx) dr
- f«) (-xsin sx) dr
2.86 ENGINEERING MATHEMATICs
- VF SS)x sin sx de
0
-F, Ixf)]
(i.c..) F, [xf)1 = F.1)
7. F xt) =
E,)
Proof We know that
F)] -V f) sin sx dx
Differentiating both sides w.r.to s we get
ds
fe) sin sx de
0
V Is (sinsa) d
=
So) cos sx (x) dx
0
Sx) x cos sx dr
= Fekf )
i.c., Fe kS)) =
F
as UN
FOURIER TRANSFORM
2.87
IX PROBLEMS BASED ON PROPERTIES OF F.T, F.C.T AND
F.S.T.
Example 2.4.1: Find the Fourier sine and cosine transformations
of xe
Solution: (G) We know that F, Ixf¢)] = F. 1S)]
ds
Vl FIe* ] =V.
- V
-V
-V (+a
2as
() We know that Fe lxf)] =
F, f)1
ds
Sol. F.[xe" = - F , I"]
ds
- -V2+d0-s(2
(G+a2
= - V2+-22
2.88 ENGINEERING MATHEMATICs
Example 2.4.2: Find Fourier cosine transform of e * and hence
find F, [xea*]. [A.U. N/D 2006]
Solution : See Example 2.3 a(14)
Fea = /43
Now F, Ixe*)- Fds i
es/4a
2
4a
e-s/4a
s43
22a3
transform of e" and hence deduce
Example 24.3: Find Fourier
2as
that () F [xea |xl =
VT (s+a22
cos xt d
=e-a /x|
2007]
oa24?
[A.U. Oct.2001, M/J
Solution: We know that
FIf)
1
2.
FOURIER TRANSFORM
2.89
V27T ea (cos sx + isin sx) dr
1
V27T 2eax
0
cos sx dr
Since ea 1x cos sx is an even function
eax cos sx dx =
2Je cos sx d
0
ea x sin sx is an odd function
Ceaxsinsx dx = 0
V 0
ax cos sx dx
by formula Se a* cos bx dr =
a+b
Using inversion formula we get
1
V F If«)] e ds
1 SX ds
V27 s2+2
V
2.90 ENGINEERING MATHEMATICSs
-
cOs sr- i sin sx ds
-P
cos Sx
Since 1 5 an even function.
COS SX
f ds =
2 f
COS SX
+a2
Sin sr
i s an odd function.
sin S ds =0
f) f COs sx
ds
os+2
COs x
dt=ea x|[: s is
dummy variable]
F [xea k] =
-i F )
ds
FOURIER TRANSFORM
2.91
-iaV 0-2s
+a
-N +
2as
Example 2.4.4: Find the Fourier sine transform of e a and hence
ax
find the Fourier cosine transform of
Solution: We know that
F,f6)]-V? Is9sinsd 0
-ax
sin ax dx
-V : Ssinbx d
0
=
To find Fe [xe]
-[ V
2.92 ENGINEERING MATHEMATICS
VE )-1
V -
V
Example 2.4.5:Find the Fourier transform of e* and hence find
the Fourier transform of e cos 2x
Solation: We know that F
[f)] =
S)E dr
F =
S de
2Se (cos sx + i sin sx) dr
1 00
VTSe cossx dx +-
Sesin sx dr
2
ecos sx dr +0
Since e cos sx is an even function.
e sin sx is an odd function.
FOURIER TRANSFORM
2.93
F () V S"cos
0
.sx dx
V :e"cos bx dk +
a
To find F [elcos 2
By Modulation theorem,
Ff)cosa) ; =
[F (6-a)+ F
(s+a)]
FIel cos2x]=5 1
(6+2)+1
1 1
|2-4s +5 s+45+ 5
+ 4+5+s-45 +5
V27
+5-(4
2+5)
V27T4 10s+25- 16s
=
+5
A-6s+25
2.5 CONVOLUTION THEOREM- PARSEVAL'S IDENTITY
2.5.1 Definition: Convolution
The convolution of two functions f ) and g (1) is defined as
8 ) SO8-1) dt.
2T
2.94 ENGINEERING MATHEMATICs
2.5.2 Convolution Theorem:
The Fourier ansform of the convolution of f(x) and g ) is the
product of their Fourier transforms. [AU Trichy ND 2009
(i.e.) F Lf) *s)] =
F () G 6) =
F [f] F ls()]
Proof: We know that F [f)] = S f )e dr
Ff)*8) ] =
Ss)*g )] d
27
- ros-9aa
by changing the order of integration we get
SfOs -) ad
c
1
V2Tf() Fls-)] dt
1
VSf)" G ()dt
by shifting property Ff*-a)] = e s F ( )
rOURIER TRANSFORM
2.95
- G () F (6) =
F (6) G (6)
Note FF () G ) =f)*8)
-
FF )] F [G (6)]
25.3 PARSEVAL'S IDENTITY
IfF () is the Fourier transform of f(x). Then
S1fdr = S | F(¢) |ds
- 00
[A.U. CBT Dec. 2008]
Proof: By convolution theorem
F f ) * s ) ] = F (). G ()
fo)*8) = F[F (6). G ()]
S08-)dt = F) G 6)»
ds (1)
putI=0 and g(-1) =
f) there it follows that
G ) =
F()
(0)Sf)() d = f F() F() ds
Note: In the same
way we can prove Parseval's identity for Fourier
Since and
cosine
transforms.
Ff)] F, I and =
F. l8 )] =
Fe («) then
2.96 ENGINEERING MATHEMATICS
00
SIs) |*dr =
f
b
IF ()|ds and
0
(i) S I s ) |*dt = f IFe()ds.
0 0
Problems based on Convolution theorem and Parseval's
X.
identity
Example 2.5.1 Find the Fourier transform of
- t
if xl 2where
a
a
is a positive real number.
Hence deduce that (i) in at= and (i) dt=
[A.U. March, 1996] [A.U N/D 2007, A/M 2008]
Solution : The given function can be written as
if <x < a
10 otherwise -a
fo)
F(s)= F f«)]: Sf)e d
-00
1
- de
V27t -a
1as e ias
1
V2 Tt IS
ea elas
1 2i sin as . s i n ax =
2
V2 is
F() V2 sinas .(1)
Fourier inversion formula we have
(i) Now, by
S)= V22SFo)e-ixds
OURIER TRANSFORM
2.07
sin as
(cos sx- i sin x) ds using (1)1
Sinas Sin as
cos sx ds-T sin sx ds
S
c o scos sx d s 0 ) sin as sin sx is an odd function in s]
cos srds :i cos sx is an cven function in s
sin &s cos sx ds S ) . (2)
putting , we get J ds
S
0
Now, put = as. Then we have s =and ds
ds =
Further 0 as s 0 and t o as s > 0o
Gi) Using Parseval's identity S Isc)|*d« =
S |F()12s
2
We get 1d Sinas ds
S
2
ds
2
Sin as
ds= a n
Putting t= as we ge
2.98 ENGINEERING MATHEMATIcs
sindt
a
2SSdt =: is an even function]
dt
Example 25.2 Find the Fourier Transform of
Hence deduce that
Oif ixi >1
1
-
[AU. April, 2001, May, 2001]
[AU. A/M 2005, N/D 2005, M/J 2006, N/D 2007, CBT Dec.
2008]
[A.U N/D 2009]
Solution: Given f() = * l , -1<x<1
,X<-1 and x >1
Tne Fourier transform of f) is
F)
S(1 -
|x|) (cos sx +i sin sx) dx
V2T -1 (1 l) cos sx de + S(1 -
xl) sin sr de
-1
S (1- |xl) cos sx dr +0
-1 [ (1- Jx|) sin sx is odd
FOURIER TRANSFORM
2.99
( x ) cosstde . (1- x|) cossx is even]
[As x>0, Ixl =x ]
Va--- cos sx
va- Sin COS Sx
0
.V[o5 -
V cosS
-V -COS S|
(1-coss
Hence IFC)2 -
Using Parseval's identity S |F()|* ds =
S |(x)1
-00
dx
00
we have
-cos s ds - S(1-xl)
-1
=
2S(1 -
x) d
asx>0, rl =x
]|
[ 1 -rl is even]
2.100
ENGINEERING MATHEM
3 0
-[0-
2
-10-1
00 Sin
COS s ds
2
0
as
- 00
ds
co Sin
ds put 2=s
sin'! (2dt) 2424 dt d s
o (2)
2 d t = ds
Example 2.53: Show that the Fourier transform of
)= a-1, |x| <a sin as a s cos as
|0, V
Hence deduce that ( Sint-tcost
dt==Using Parseval's
identity show that sint- tcos t
0 dts
A.U. March 196, Nov. 2001, A/M 2004]|[AU. N/D 2008, A/M 2009
Solution: Proof: We know that
F O U R I E R T R A N S F O R M
2.101
0 + S (a*-x)e dr +0 -a
5x
-(-2x)
27
27 S is -a
0+2 2-a
1
0- is is
2 a es a
+
2e1sa 2ae 2 isa
s i
2 a ei s a e i s a
1 2ae'sa
2iesa
V27 s
1 -3-")
1 12 cosas]+sin as
V27
V27T
t e I X
-ix
- sin r =
. cosx =
2
,
2
1 -4as cos as + 4 sinas
V2T