2.
102
                                                                      ENGINEERING MATHE
                                     Sinas       as cos as
                                                                                              HEMATICA
          F              2V?          sin as-s coss
  ic.         ()                                                       .(1)
                                    2V?            sin ss cos s
 when a            1,    F(6)
                                                             s
  Using inverse Fourier Transform, we get
f V                                        sin as        -
                                                             as cos
                                                                      as|e 15x ds
              1
              V27V         V                   (sin as- as cos as |cos sx       -
                                                                                     i   sin sx] ds
r)-                    Sin as-as cos as
                                s
                                           cos sx ds                  Sin as-as cos aas
                                                                                              sin ox ds
                       Sin as       as cos as
                                                cossx ds +0
[The second integral                is odd and hence its value is
                                                                             zero]
                        sin as       as cos aS
                                                 cos sx ds           (2)
                                                        [: the first integral is evenj
Putting a = 1, we get
(2)S)                               Sins       SCOS s
                                                        cos sXx ds
                                           3
                   -                sin- t cost
                                                   Cos tr dt
FOURIER TRANSFORM                                                         2.103
Puttingr=        0, we get
( ) 10)                        sint cosjt
                               Sint-fc                   1
                          0
                          Sint-t cost dt
                      0
 Using Parseval's identity,
F)ds SIf*|de using (1)
    : V (sins-S cOs s) ds=S(1-a
                                                    -1
.                                  ds 2S (1-jde
                                                0
                                   2
           sin S-S cos s                   - 2 1+-2/]
                                                             - (0 +0-0)
            =2
                          15       --
                                       2
            | Sin s   SCOS S
 i.e., J
                           12
 ie, f      Sint- t cost                   d-
      0
 2.104
     Example 2.54       Find the Fourier transform of e ax
                                                                          ENQINEERING MATHEMATIC
                                                                                                ifa>0
                        Deduce thnt o (a+ a22d x -4aif a>0.
                                             -a x
 Solution:      Given   a)          =
                                         e
                             ax
                                        if 0 sx       <    o
                )
                            ax      if   -oo<r<0 where a>0
             F Ifa)]    -
                                         -00
                                             e a lx            iSx dr
                                1
                             2t              axisx d+ Sea* eisx d
                                                      0
                                              la+is) xdt +                 f   e-(@-is) x dr
                                                                           0
                                         | ( a + is) x
                                                                               e       is) x
                                               a+is              -   co
                                                                            - (a-is)
                                1
                                                                                   -
                                                                                       (a   -
                                                                                                is),
                                             1
                                         4     + is        a         is
                            2V2
             F -            V                    a
By Parseval's identity
If    FS)   is the   Fourier transform
                                                      of   f(«). Then
I E RTRANSFORM                                                                                     2.105
          ORM
     ita-V_                                                                 ds
                              0
                                                               ds
                              0
           -2ax
                                                  1
                                        2.5ds
                                      (+a
             4a3
                                                  is                             dummy variablel
                                         a >O[. s
                                                                             a
       2
Example2.5.5:      Find the Fourier transform of
                                                                            1
                   f(x)           =     1     -x       if   lx|         <
                                  = 0                  if lx| > 1
                                      Sin s       S COS S         cosds= 3z
    Hence show that .                                                                 16
                              0               S
                                                      sin x)
    Also show that        X           cos X                         dx      =
 Solution: See Q.No. 2.2.b(1) in problems based on Fourier
 transform and its inversion formula
     F)          4
           Ff)) 32T Sins- coss
                          =                                         s
                                                          ENGINEERING MATMEMATKA
2.100
                                by
                                       Parseval's   identity
                    F)
Now     if FV)]
          Hece (1-r)d                                           (-s CosS+ Sin
                                                                                sd
          eusts   only   in (-1,   1)
   f)
                                                - j0-ar
         ( - scoss +sin s)*d                         -1
 i.         -(-s coss +sins) ds
                                                     -1
                                                     1
                                        ds      = S(1-P
            (-s coss + sin         s                 0
                                                     1
              cOS X sinx
                                       dx
                                                          T:(a-by=( -a
                                                                      (-0+0)
                                                     15 10+ 3            8
                                                           15            15
                         (x cos x- Sin
                                       X)    d=
FOU        TRANSFORM
                                                                                                            2.107
           , 56 :         Find the Fourier transform of f() given by
Exanple 2 . 5
                          f(x)            1 for Ix| <2
                                        = 0 for |x| >
                                                                                                  2
                     and      hence evaluate                                 dx and                   dx.
                                                                                          0
                                                                                         [A.U. Nov/Dec.2003]
               The given cquation                    can          be written       as
Colhtion
                          1        if   -2   <x <             2
       f()
                 =
                     = 0           otherwise
       F   )                  F    f)        =
                                                     y27 Sf)*d
                                                      1            isx
                              -2                                     is2
                                        ei2s                                 2i sin 2s
           2                                              21                  is
                1 2 sin 2s
                                   S
           F   ()     =
                              F    If)]          =
                                                                    sin 2               (1)
                                                                         S
    Now         Fourier inversion formula                             we      have
)          by
                                                       eis*ds
           T)                  VT SF ()
                                                     Sins          (cos sx - i sin sx) as
                                                          S
                               s sin 2 cos sx ds                             sin2s sin sx dr
                                                                               S
2.108
                                                                                        ENGINEERING MATHEMATiC
                                cos               sr dr                             Sin           sx isan   odd
                                                                                                                  function in
                                COsCOs sx dr                                                coS Sx in an
                                                                                                         cven
                                                                                                                  function   in   sl
                        S                cossx dr           =
  putting x         s
                                0   we       gets                ds
                                                            S
                                                       0
                                                 Sin25
                                             0     S       ds    =
                                                                                  (: f)       =
                                                                                                    1 in
                                                                                                            lal <2
   Now putt                 =
                                        2s
                                                       S0                t>0
                dt          =
                                    2 ds
                                                           Sc t c
                                    S Sint
                                        o (/2)
    Hence à     0           t
                                                           (ic,)sd   0                            "tis
                                                                                                  t:tis«dummy variable]
        (i)   Using Parseva's
                              identity Sf ()                                            d    =S      \ F () |     ds
                                    2
                                                   iIVsin 2
              we        get         J dx
                                    -2
                                                                                            ds
                                                                oo       S         ds
                        12-(-2)1 2sin 2                -
                                                                oo       S         ds
                                    4
                                                                             ds
                                                                                             2.109
FOURIER        TRANSFORM
                                 ds        2
                                                    S           00
                      2s         we get
     putting
                                                                      0
                dt    =   2 ds
                                               2T
                                      dt   =    2T
           2
                      sinEdt = 1
           2              sin Edt          T
                                                    [                  Is an even function
        -
Hence                     d-                              tis    a   dummy variable]
                                                           dx              using transforms.
Example2.5.7:             Evaluate
                                          (+a)(+b)
                                                                       M/J 2006]
                                     [A.U. April, 2001][A.U. N/D 2005,
                                                    know that
Solution   :    Let   f(x)   =
                                  e        we
                      Fe IS)I =Fel e " |
                Let                   e                 know that
                          g(x)   =              we
                      F Ig)           =
                                           Fe           - VE
2.110                                                   ENGINEERIG MATHEMATICS
 By formula
        Sf)s)dt - fFe lf(r)] F, ls))ds
                           0
                         V                              V|                ds
           -(a+b)x a-                        )|                      ds
          - (a +b)x"                                1
                                                                 s
           (a +b)
                                                   1                 since e= 0
                                                              ds
                                                                          =1
                                                   ds
(ie.)+he +)                        ds   *
                                             2ab   (a +b)
 Example 2.5.8: Find the Fourier transform of e , using
                      Parseval's    identity show that          dx
Solution:     F[e"l]       =
                               V            1+
                                                        already proved.
        By Parseval's identity.
        SF ds =S1sa) |de .(1)
Here f)       =   e"and F (6)
                                             V
                                            ="
 FOURIER TRANSFORM
                                                                                          2.111
 )    (                                    ds (ekI,?dt
                                               ds        2 (e-x dr.
                                                                0
                                                           00
                                   1
                              (1+s)2                       0
                                                          10-11-
                                       1
                      z   =
                                           s        is   dummy variable
                                   cos x, x|
Example    2.5.9:   Iff(x)     =
                                                                    then find the Fourier
                                   o.IH
                                                                     cosa /2
     transform of f(x) and hence evaluate                                      dx using
                                                                    o(1-2
     Parseval's identity.
Solution    We   know thal
                                                                  ENGINEERING MATHEMATIC
2.112
F/                        Ssme"de
                 cOs.re"                    dr |     f()              =
                                                                             cosX,        <
             1/2                                                            0,       otherwise 21
             cos                 x| cos sr + i sin sx ] dk
                     /2                                               T/2
                     cOs sx cos x dx +                            S i nsx cos x dr
             V2/2
                     a/2
             2       Jcos sx cosx dr             +       0
                      0
Since   cOs sx coSx        Is    an even    function
        sin sx sin x is         an   odd function.
                            cos (s+1)x +cos (s-1)x|
                                                 2                              dx
                     n/2
                 1
                          | cos (s + 1)x + cos (s
                                                  -1)x]dr
                 1         Sin (s+1)
                           sin       t/2                     sin (s
                                                     ,
                                                                      -
                                                                            1) z/2
                                      S+1
                                                                 S          1            +0)
                                                                                     - (0 +0)
                       Sin
             2                    S+1              sin-3      S-1
                           Sin
             V27                     S+1           sin-2      S-1
                           COS   S
         E
                                  2        COs
             2 7           S+
                                           S-
                                                                                 2.113
        RANSFORM
 UAIER TRA
FOUp
           cos    2
       T                       +1
                 S.
           COS
                                S T
                          COS
                                 2
  F)=
            *|1-A
By Parseval's identity
    F P s SIfPa            =
            Cos                 t/2
                  2        ds = Scosxde
            (1-s2                     -    t/2
           Cos 7
       (   1   -
                      2
                      2   s
                                  =   1+cOs2 22
                                          fltcos
                                      /2
            cos257                            n/2
                      2
                          ds     =
                                          2     S        1+COS 2     [.   even
                                                              2
           (1-s22                               0
           cos                            t/2
            2
       o (1-s
              ds= J(1                               +   cos 2x) dr
                  0
2.114
                                                             ENGINEERING MATHEMATICS
                =
                            0-(0 +0)
                       S
             cos
                 2
             1 - 2ds
              Cos2
                      2
                                  [:                s   is   dummy variable]
 Example 2.5.10: Using
                       Fourier
                      00
                                           sine   transform, prove     that
                                  da
                     a+1) b+*)                          2 (a +
                                                                 b)
 Sol. We know       that
                           F[ea]       =
  We know by
                and
                           F [eb
               Parseval's identity
                                   -V
        SF   6) CG, (6)     ds
                                  =S f)s)dr
                                   0
        SFea" ] F, [e-bx ] ds               =
                                                  f eax-bx
                                                  0
                                                         ds=S e (a+ b)x d
                                                                 0
                                           (a + b)x]
                             ds
                                       (a+b)
FOURIER TRANSFORM                                                              2.115
            2
                                      -0-
                                           T        s is dummy variable]
                                         1
                                      d a+b
       7    +)+h
                                       d                 1
           (a+1)2 +1)                               2(a + b)
Example 2.5.11 Using Parseval's identity of the Fourier cosine
                transform,                                         dx,   if
                                     evaluaex(a+)
                                          0 x(a+
                f)              0, /x| >a> 0 and
                g)= ea*, a>0.
                           1, Jxl <a
Sol.   Given:f)      =
                           0, xl>a>0
We know that Fe U)} =Fe (*) - V Sf«) cos sx dr
                                                               0
                                                                   cos sx dx
                                                               0
                                                               sinsx
                                                    .V;        Sin sa
                                                                   S
Given:g (x) = e          a |x
 F.ls)             V?            0
                                               sx   dx
2.116                                           ENGINEERING MATHEMATICS
                .V         0
                               ax
                                    cos sx dx
                  since in the interval |x| is + ve
                      by formula Se             cos bx dr   =
                                        0                       a+2
By using Parseval's identity
SFLf) 1 F. l s ) ] ds = S f ) s ) *
(V                         (VE )                 ds Seax d
                                                       0
                a sin sa
              Sinax
   F                   - e -1]
                                     . s is a dummy variable]
                 Sin ax
Example 2.5.12: Using transform methods, evaluate S              dx
                                                            o (x+a)
Sol. We know that     F.   -          V? 4
By using Parseval's identity
FOURIERTRANSFORM
                                                                        2.117
                                  dr
                                               0
            ll-lo                                  0
                         a        dr = eZax dr
                                       -
                         dx                1
                             dx
                        transform methods, evaluate            J    dx
Example2.5.13   Using
                                                               +a2
                 where a >0.                               [A.U CBT Dec. 2009]
Sol. We know that F, [eax] = V
                                                       +
By using Parseval's identity
      ( V ) ds - /oy
        0                                          0
                                  ds
                T        +
2.118
                                                       ENGINEERING MATHEMATICS
                                             eZax
                                   dr
                   o+a2
                                                       s   is   a
                                                                    dummy variable|
                   (               d= 4d
Example   2.5.14   Verify convolution        theorem for            f(*)   =
                                                                               g(x)=e*.
     Def: Convolution theorem for Fourier transforms. The
                                                           Fourier
transform of the convolution of f() and
                                        g() is the product of their
Fourier transforms.
           Ff          s)]     =
                                    F   f)}        F
                                                       is))
Given                  f ) = 8*) = e
We know that F
                    )}     =
                                            Ss)e de
                                   -isx dx
                                              dx
                    V27t
            ANSFORMM
    OURIER TRAN:
                                                                    2.119
    put=r-
       dt d r
                                                         dt
                        put            = u           0        u»0
                         2 dt=           du      | t o        uo
                               d -d
                                         2 Vu
             -                           0           ,
                       -in
           1-s/4
      FU))=Ve
      Fls)]        =
                       F|f)]       =
                                                 4
:
     Flst)]   . Fs )] -                              -                ()
2.120
                                            ENGINEERING MATHEMATICS
                             *-u) du          by convolution definition
f)      &()       V2 7T SSu)g
              =
                                                 4   du
                                                     du
                        S(-du
 put      u-
        dt=du                     toco
                           e2
                           V272e
                                  0
                           put      =y | t 0 y>0
                                 21 dt=
                                       dy     y> *
                                          2 vy
FOURIER TRANSFORM                                                                         2.121
                                               2v dy
                                      0
                       -xA
                                                       y
                                  0
                                                   : S e / 2dt =
                      V27T V2
                                                           0
       F If)'s)]
                                  =
                                          F        2
                                  -FI
 We know that e** is self                       reciprocal     under Fourier transform.
          .           Fle2=e
          : Flf) g)] - 5*2                                        ()
                                  (1)            (2)
                      Hence convolution theorem verified.
                                              EXERCISE 2.1
  I.    Find the Fourier transform of
  .               sin x       ,
                                  0 <x<1
       S)     =
                            0,Oherwise
  2. Sa) =            ikx         if a<x. <b
                          0       ifx < a &x >b
  3     a)        o           ifOtherwise
                                 0sx<k1
                      0