Fourier Transform
Fourier Transform
Transform Techniques
MIT SOE
Preliminaries Basic Formulae
Fourier series:
a0 n x n x
f ( x) n 1 an cos bn sin
2 l l
Where ,
1 c 2l 1 c 2l n x 1 c 2l n x
a0 f n c
x dx , a f x cos dx , bn f
x sin dx
l c l l l c l
MIT SOE
Fourier Integral representation or Fourier Integral Theorem
f x =
1
2
u
u
f u e i u x du d
If we write
f (u)eiu du = F ( ) , then (1) can be written as
1
f x = F e i x d
MIT SOE
Fourier Transform and Inverse Fourier Transform:
F ( )
f (u )e iu du
1
f ( x)
2
F ( ) e i x d
Even Function:
A function f x is said to be even if f x f x x . Graph of even function is symmetric about y-
f x dx 2 f x dx .
a a
axis. For even function,
a 0
Odd Function:
A function f x is said to be odd if f x f x x . Graph of even function is symmetric about
f x dx 0 .
a
opposite quadrant. For odd function,
a
MIT SOE
Fourier Transform for Even Function:
F ( ) 0
f (u ) cos u du
2
f ( x)
0
F ( ) cos x d
MIT SOE
Fourier Transform for Odd Function:
F f (u ) sin u du
0
2
f ( x)
0
F ( ) sin x d
MIT SOE
Fourier Cosine Transform:
Fc f (u ) cos u du
0
2
f ( x)
0
Fc ( ) cos x d
MIT SOE
Fourier Sine Transform:
Fs f (u )sin u du
0
2
f ( x) Fs ( ) sin x d
0
MIT SOE
Some Formulae:
(ii) eax is neither even nor an odd function since eax eax e ax .
du
(iii) Integration by parts uvdx u vdx vdx dx , where u and v are functions of x.
dx
Generalized Integration by parts uvdx u 'v u"v1 u '''v2 u""v3 .... .. , where dashes '
mn
(iv) B m, n .
mn
MIT SOE
m n
(iv) B m, n .
Some Formulae: mn
(v) n 1 n n and n 1 n ! if n is positive integers, 1 2 .
dI d
f x, dx f x, dx
b b
d
d a a
sin ax 2 If a is positive
(vii) 0 x
dx
2 If a is negative
.
a b
(viii) 0
e ax cos bx dx
a 2 b2
and
0
e ax sin bx dx
a 2 b2
.
MIT SOE
1, 𝑥 > 0
Example: Find the Fourier transform F(λ) of 𝑓 𝑥 =ቊ
0, 𝑥 ≤ 0
Solution: We have to find F(λ),which is the Fourier transform of given function 𝑓 𝑥
First we check whether given function f(x) is even or odd
Consider,
1, −𝑥 > 0
𝑓 −𝑥 = ቊ
0, −𝑥 ≤ 0
1, 𝑥 < 0
=ቊ
0, 𝑥 ≥ 0
1, 𝑥 > 0
≠𝑓 𝑥 =ቊ
0, 𝑥 ≤ 0
i.e. 𝑓 −𝑥 ≠ 𝑓 𝑥 , Also 𝑓 −𝑥 ≠ −𝑓 𝑥
∴ 𝐹 λ = න 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
−∞
0 ∞
= −∞ 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢 + 0 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
0 ∞
= −∞ 0 𝑒 −𝑖λ𝑢 𝑑𝑢 + 0 (1) 𝑒 −𝑖λ𝑢 𝑑𝑢
∞
= 0 + 0 𝑒 −𝑖λ𝑢 𝑑𝑢
∞
𝑒 −𝑖λ𝑢
=
−𝑖λ 0
𝑒 −∞ 𝑒0 1 1 1
= − = 0 − = i.e. 𝐹 λ =
−𝑖λ −𝑖λ −𝑖λ 𝑖λ 𝑖λ
1, 𝑥 > 0 1
∴ Fourier transform of 𝑓 𝑥 = ቊ is 𝐹 λ =
0, 𝑥 ≤ 0 𝑖λ
MIT SOE
𝑒 −𝑥 , 𝑥 > 0
Example: Find the Fourier transform F(λ) of 𝑓 𝑥 = ቊ
0, 𝑥 ≤ 0
Solution: We have to find F(λ),which is the Fourier transform of given function 𝑓 𝑥
Consider,
𝑒 −(−𝑥) , −𝑥 > 0
𝑓 −𝑥 = ቊ
0, −𝑥 ≤ 0
𝑒𝑥, 𝑥 < 0
=ቊ
0, 𝑥 ≥ 0
𝑒 −𝑥 , 𝑥 > 0
≠𝑓 𝑥 =ቊ
0, 𝑥 ≤ 0
i.e. 𝑓 −𝑥 ≠ 𝑓 𝑥 , Also 𝑓 −𝑥 ≠ −𝑓 𝑥
∴ 𝐹 λ = න 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
−∞
0 ∞
= −∞ 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢 + 0 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
0 ∞
= −∞ 0 𝑒 −𝑖λ𝑢 𝑑𝑢 + 0 (𝑒 −𝑢 ) 𝑒 −𝑖λ𝑢 𝑑𝑢
∞
= 0 + 0 𝑒 −(1+𝑖λ)𝑢 𝑑𝑢
∞
𝑒 −(1+𝑖λ)𝑢
=
−(1 + 𝑖λ) 0
𝑒 −∞ 𝑒0 1 1
= − = 0 − =
−(1+𝑖λ) −(1+𝑖λ) −(1+𝑖λ) 1+𝑖λ
𝑒 −𝑥 , 𝑥 > 0 1
∴ Fourier transform of 𝑓 𝑥 = ቊ is 𝐹 λ =
0, 𝑥 ≤ 0 1+𝑖λ
MIT SOE
𝑥, 𝑥 > 0
Example: Find the Fourier transform F(λ) of 𝑓 𝑥 =ቊ
0, 𝑥 ≤ 0
Solution: We have to find F(λ),which is the Fourier transform of given function 𝑓 𝑥
First we check whether given function f(x) is even or odd
Consider,
−𝑥, −𝑥 > 0
𝑓 −𝑥 = ቊ
0, −𝑥 ≤ 0
𝑥, 𝑥 < 0
= −ቊ
0, 𝑥 ≥ 0
𝑥, 𝑥 > 0
≠ −𝑓 𝑥 = − ቊ
0, 𝑥 ≤ 0
i.e. 𝑓 −𝑥 ≠ −𝑓 𝑥 ,Also 𝑓 −𝑥 ≠ 𝑓 𝑥
∴ 𝐹 λ = න 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
−∞
0 ∞
= −∞ 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢 + 0 𝑓 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
0 ∞
= −∞ 0 𝑒 −𝑖λ𝑢 𝑑𝑢 + 0 (𝑢) 𝑒 −𝑖λ𝑢 𝑑𝑢
∞
= 0 + 0 𝑢 𝑒 −𝑖λ𝑢 𝑑𝑢
∞ ∞
𝑒 −𝑖λ𝑢 𝑒 −𝑖λ𝑢
= 𝑢 − න (1) 𝑑𝑢
−𝑖λ 0
−𝑖λ
0
𝑒 −∞ 1 ∞ 1 1 1
= ∞ − (0) + 0 𝑒 −𝑖λ𝑢 𝑑𝑢 ∴ 𝐹 λ = =
−𝑖λ 𝑖λ 𝑖λ 𝑖λ −λ2
𝑥, 𝑥 > 0 1
∴ Fourier transform of 𝑓 𝑥 = ቊ is 𝐹 λ =
0, 𝑥 ≤ 0 −λ2
MIT SOE
1 − 𝑥 2 ,for 𝑥 ≤ 1
Example 2: Find the Fourier transform of 𝑓(𝑥) = . Hence evaluate
0,for 𝑥 > 1
x cos x sin x
0
x 3 cos x dx .
1 x , for x 1
1 x , for x 1
2 2
Solution: Here f x f x x
0, for x 1
0, for x 1
1
2 ).𝑐𝑜𝑠 𝜆 𝑢𝑑𝑢 + 0. 𝑐𝑜𝑠 𝜆 𝑢𝑑𝑢 ∞
=
1
0 (1 − 2 = ∞ ( 1
𝑢 ).𝑐𝑜𝑠 𝜆 𝑢𝑑𝑢 + 0. 𝑐𝑜𝑠 𝜆0 𝑢𝑑𝑢 − 𝑢 1
1
cos u sin u u
1
2 sin u 2 sin
=
1 u
2u =2
2
1 u 3
2u
MIT SOE 0
Illustration
1, for x a
Example 1: Find the Fourier transform of f x
0, for x a.
1, for x a
1, for x a
Solution: Here f x f x x
0, for x a
0, for x a
a
= 1.cos u du
0 a
0.cos u du
sin u
a
1
= sin a
MIT SOE 0
2
2sin3
0
2cos
= 0 2cos
2cos
2sin 3
2sin 00 0 00
2sin
== =
0 0 2 2cos
3 3
0 0 0
0
2 cos 2 3
202
sin 0 0 0
Fc = 3
== = 2 2 cos 3 23 cos sin
2 cos sin
FFcF
cos
sin sin
c c
Now, we have tofind the Fc integral.
= So, we 3 use 3Inverse Fourier Transform which is given by
Now, we have to find the integral. So, we use Inverse Fourier Transform which is isgiven
by byby
2 cosFourier
Now,
Now,wewe have
have totofind find thethe integral.
integral. So,So, we we useuseInverse Fourier
Inverse Fourier Transform Transform which is given
which given
Now, we have to 2 find the integral. So, we 2 use Inverse sinTransform which is given by
f ( x) =
F ( ) cos x d
22 C
FCC(()2)cos
2
2 222
cos cos
cos
cosxxddxd 0 2 323 coscos
sin sin
3sin cos
xdxd
x d
f ( x) = 00 FC () cos
f f(f(xx()x) ) === 2 xcos
cos d
0F
FC ( ) cos0x
0 0
d
3
3
sin
cos x d
0
0
cos sin
0
4 4 sin cos
==
44 cos
4 4cos3 cos sin sin
33cos
cos x d44sin
cos xdxd
sin
cos
cos
xcos x d
000 3 3 cos xcos 0 0 3 3 cos xcos
== sincos 4 sin cos
3cos
x
cos d d
=
sin d 4 sin cos d x d
0x d
3
0 0
0 0
3
2 2 2
sin cos cos x d f x 4
sinsin
sin 333 sin
cos
cos
f fx x4 4 1 x x, for
11x1 1x,xfor
2,x for
1 1x 1
x , xfor
0 3
cos cos cos
cos d4
xxdxd
d f 0,
x4 for
, for2 1 x 1
00
3
cos
cos 4x 44
f x
4 0,0,0, 4 forforfor
x 1 x 1
x 1 1
0
0, x for x 1
0
Put x 1 , we have
Put
Put xxx11,,1we we have
have
Put
Put , we
x have
1 , we have
sin cos
sin
sin cos cos d 0
3 cos
00sin
cos
3 sin cos
cos
cos
cosddd0 0
cos d 0
0 0 0
3
3
3
sin x x cos x b f x dx b f t dt
sin x xxx3 cos x cos x dx 0
a b b b ba b b b b
0sin sin 3 sin
x cos xxxcos
xcos a f f xxdx f ft tdtdt
fa f ttdt
x x cos x dx
x 0
0
0
x
x0
x 3
x
3coscos xx
dx
dx cos
0
x
0 dx 0
a
f dx
xf
dxxa adx
dt
0
3 a a a
MIT SOE
Exercise
1, for - 2 x 0
1. Find the Fourier transform of f x . Hence show that
1, for 0 x 2
1, for - 2 x 0
1. Find the Fourier transform of f x . Hence show that
cos 2 x 1 sin 2 x
1, for - 2 x Ans:
1, for 0 x 0 F ( ) cos 2 1
2
1. 0 Find the dx
Fourier transform. of f x . Hence show that
x 2
cos 2 x 1 sin 2 x 1, for 0 x 2 cos 2 1
0 cos 2 xx 1 sin 2 xdx 2 . Ans: F ( )
cos 2 1
0 x
dx .
2 -3
Ans: F ( )
x <1 sin cos x
2. Find the Fourier Transform of f ( x) . So, evaluate d and also deduce
0-3 xx >1 <1
0 sin cos x
2. Find the Fourier Transform of f ( x) . So, evaluate d and also deduce
0 x >1
0
sin
sin sin cos x x 1 sin
the value of
d . F ( ) 3
d 2 ,
d .
0 sin sin 0 sin cos x 0 x 1 1 0 sin 2
the value of d . F ( ) 3
d 2 x , d .
0 2
0 0
x 1 0
x 2
3. Find the Fourier Transform of f ( x) e Ans: F ( ) 1 2
x 2
3. Find the Fourier Transform of f ( x) e Ans: F ( )
1 2
MIT SOE
Examples on Fourier Sine and Cosine Transform and Inverse Fourier
Transforms:
Example 1: Find the Fourier cosine and sine transforms of f ( x) e2 x 4e3 x .
0
(e2u 4e3u ) cos u du
0
e2u cos u du 4 e3u cos u du
0
2 4.3 a
22 2 32 2
0
e ax cos bx dx
a 2 b 2
1 6
FC 2 2 2
4 9
MIT SOE
Fourier Sine Transform is given by
FS ( ) 0
f (u)sin u du
0
(e2u 4e3u )sin u du
0
e2u sin u du 4 e3u sin u du
0
4.
22 2 32 2
1 4
FS 2 2
4 9
MIT SOE
e ax x
Example 2: Find the Fourier sine transforms of f ( x) and hence evaluate tan 1 sin x dx .
x 0
a
e au
0 u
sin u du - -- - - -- - - -- - - -- - - - (1)
d e au
d
FS ( ) 0
u
sin u du
e au
0 u
cos u. u . du
0
e au cos u du
d a a
FS ( ) e ax cos bx dx
a b 2
d a2 2 0 2
MIT SOE
Integrating
a
d FS ( ) a2 2 d A
a
FS ( ) tan 1 A - -- - - -- - - -- - - -- - - - (2)
a a
2
0
tan 1 sin x d
a
MIT SOE
e ax
tan sin x d
1
0
a 2 x
Put x 1 , we have
0
tan 1 sin d e a
a 2
x
0
tan 1 sin x dx e a
a 2
MIT SOE
Example 3: Find the Fourier cosine and sine transforms of the function f ( x) e x and hence show that
cos mx m x sin mx m
0 1 x 2
dx
2
e and 0 1 x 2
dx
2
e .
0
eu cos u du
1
1 2
1
FC
1 2
MIT SOE
Inverse Fourier Cosine Transform is given by
2
f x FC cos x d
0
2 1
0 1 2
cos x d
cos x x
d f e
x
0 1 2
2 2
Put x m , we have
cosm m
0 1 2
d
2
e
cos mx m
0 1 x 2
dx
2
e
MIT SOE
Fourier Sine Transform is given by
m is givenFourier
by FSine 0 f (uis)singiven
S ( )Transform u duby
Fourier Sine Transform is given by
0
eu sin u du
0
f (u)sin u duF ()
FS ( )
S
10 20
0 u
efu (sin uududu
)sin
f (u)sin u du
u ax
00
e e sin 0
sin e
bx
u
u
du sin
dx u b du
a 2 b 2
ax b ax ax
FS 220 e sin bx dx b
1 2
111 2 a 0 b 0
2 e2
sin bx
edx
sin
a 2 bx
b
dx
2
FS
1 2 FS 1 2
1 2
2 2
f x FS sin x d sin x d
0 0 1 2
sin x x
d f x e
0 1 2 2 2
MIT SOE
Put x m , we have
sin m m
0 1 2
d
2
e
m f x dx f t dt
b b
x sin mx
0 1 x 2
dx
2
e a a
MIT SOE
sin a
Example 4: Find inverse Fourier Cosine transform f x , if FC ( ) .
sin a
Solution: We have given that FC ( ) .
Inverse Fourier Cosine Transform is given by
2
f x FC cos x d
0
1 2sin a cos x
0
d
a x) sin(a x)
1 sin(a x) sin(a x)
1 sin(
d d 2sin A cos B sin( A B ) sin( A - B )
0
0
2sin A cos B sin( A B )
1 sin(a x)
sin(a x)
0 0
d d
MIT SOE
sin ax 2; 2;
sin ax a 0
11 22 2, aa xx00 and
andaa- x- x 0 0
2, a 0
22 2; a 0
dx dx
2,
2, aa xx00 and
andaa- x- x 0 0 0 0 x x 2; a 0
x a i.e. | x | a 1, | x | a
f x
x a i.e. | x | a 0, | x | a
MIT SOE
Exercise
2 2 29
Ans: F ( ) 10 2
( 4)( 25)
c 2
2. Find the Fourier cosine and sine transform of f x xm1 .
cos m 2 sin m 2
Ans: FC ( ) m and FS ( ) m
m
m
1 2 x
3. Find the inverse Fourier sine transforms if FS ( ) e a 0 . Ans: f x tan 1
a
sin a
4. Find the inverse Fourier cosine transforms if FS ( ) . Ans: f x 2
MIT SOE
Solve integral equations
Illustrations
Example 1: Solve the following integral equation f x cos x dx e, 0 .
0 f x x cos
0 x edx e ,, e0,0.. 0 .
Example
Example
Example
Example
1:1: Solve
1:
1: 1:Solve
Example
Example 1:
Solve
Solve
Solve
thethe
Solve
the
the
followingthe
the
following
following
following
following
following integralintegral
integral
integral integral
equation
integral equation
equation
equation
equation
equation
00
f fx x0fcos
f
f0 xxcos
cos
x
f 0xcos
cos
fcos
xxcos
xxdx
dx
dx dx
xdx
x
exe dx
dx
,e,
e
e, 0 .
,. 0.0. 0 .
is integral equation 0 f x cos x dx e , 0 .
Example
Example 1:1: SolveSolve thethe following
following integral
integral equation
equation ,
Solution: Given equation
0
0
Example 1: Given
Solution: Solve equation the following isis is
Solution:
Solution:
Solution:
Solution: Given Given
Given Given
equation equation equation
equation is is
Solution:
Solution: GivenGiven
equationisisis
equation
Solution: Given f xequation
Solution: Given equation
cos x dx is e , 0 - - - - - - - - - - - - - - - (1)
0f x cos x dx
0 f00xf00000fcos
xfffcos
xxxxcos
dx
xxxedx
, e , 0 ,0 0
e , 0 - - - - - - - - - - ----------- -(1) (1)
eee
cos
xcos
cos
cos
x dx
xdx
dx
xdx
e
dx
,
,0e
, 00 ------------------------------------------------------------- -----(1) - -(1) - (1)- - - (1)
- (1)
Fourier f x Cosine cos x dx Transform e , is0 given by - - - - - - - - - - - - - - - (1)
Fourier
FourierFourier
Fourier
0
Fourier Cosine Cosine Cosine
Cosine Transform
Transform
Cosine Transform
Transform
Transformis isgiven given is given
by bygiven
is by
Fourier
Fourier
Fourier Cosine
Cosine
Cosine
Transform
Transform
Transform isisgiven
given
given bybyby by
Fc f u cosu du e , 0
Fourier Cosine Transform is given by - - - - - - - - - - - - - - - (2)
Fc c F
F FcFFF
0f0u00 fcos
c
c ccc
0 u ffffufu
u uuucos
cos
uuudu
u e
du
ee
e , 0 - - ----------------------------------------------------------------------(2)
-----(2)
----(2)
--- (2)
(2)
F f - - - - -
cos u du
ducos ,
0
,0,e
Fc 000 f0 u cosu du e , 0 ucos
cos
cos u edu u
du , du
00
, 0 0 - - - - -
(2) - - (2)
- - - - - - - - - - - - - - - (2)
Now Inverse 0 Fourier Cosine Transform is given by,
NowNow
NowInverse
Now Now Inverse
Inverse
Inverse
InverseFourier Fourier Fourier
Fourier
Fourier CosineCosine Cosine
Cosine
Cosine Transform
Transform Transform
Transform isisgiven
given by,
isby,
isisgiven given
given by, by,
by,
Now Now Inverse
Inverse Fourier
Fourier Cosine
Cosine Transform
Transform given
is given by,by,
NowInverse
Now Inverse Fourier 2 Fourier Cosine Cosine Transform Transform is given is
by, given by,
f x 2 F2222FC0Fcos
f fxffxffxxxx
x 2
F C cos x d
cos x d
ff xx 2
0 00200FCCFCCCcosFF F xcos
cos
cos dx xddxxddd
2 00 0 FC cos x d
0 C C
cos x
2
xx22
ax cos
ax bxdx dx adx b 2ab 2
1 x 2112 cosax bx a
e cos bx dx 2
ax
0
e coscos bx bx a aab b
2 dx 2
2 2 2
1 x x b
0
2112 x 2 bbba
2221
aa
22
00 ax adx
0 e cos bx
f xffxx 2 22 1 2 x
2 a 2 b 2
f x f f x 1 21x1 22 xx222
f f
x x
111xx x2222
1 x
f x 1 x
f x MIT SOE
e3
Example 2: Solve the following integral equation f x sin x dx 3 .
e3
fxex3dx
e
f x sin x dx .
0
Example
xample 2: the
2: Solve Solve the following
following integralintegral
equation equation sin .
Example 2: Solve
Solution: the following
Given equationintegral
is equation f x sin x dx
0 0
.
0
Solution:Given Given
olution: equation equation
is is e3
Given equation is
f x sin x dx3
Solution:
0
ee3
3
e
- - - - - - - - - - - - - - - (1)
f f
x0x sin x dx
0 0 Fourier
sinf xx sin
dx x dx - - - - - - -- -- --- -- --- -------(1)
-- -- -- -- -- - -(1)
-- -- (
Sine Transform given by
is
Fourier
Fourier SineTransform
Sine Transform isis given
givenby by
Fourier Sine Transform is given by
e3 e3
S f
FS F
0 0 f u udu sin
u sin u du
- - - - - - - - - - - - -- ---- -(2)
- - - - - - - - (2)
MIT SOE
By using DUIS Rule, we have
d 2 e3
f x d
dx
sin x
0 x
2 e3
cos x. d
2 e 3 0
0
cos x. d
2
2
e3 cos x d
3 0
e cos x d
0
2 3 6
32 ax
2 3
6
0 e x 2cos bx9dx
x2
32 x 2 9 x 2
Integrating
d f x
6 1
32 x 2 c
MIT SOE
6 x 1 1 1 x
f x tan 1 A a2 x2 dx tan
3
6 x 3 1 1 1 ax
a
f x tan 1 A a dx tan
3 3x 0 , we have
Put
2
x 2
a a
Put x f 0, we0 =have
0 A A 0
f 0 0 =f0
x A tan 1 0
2 A x
3
2 x
f x tan 1
3
MIT SOE
sin x
Example 3: Using Fourier integral representations prove that e x e 2 x d , x 0
0
2
1 2
4
Solution: Consider f x e x e2 x
f u eu e2u
0 e sin u du 0 e2u sin u du
u
3
2 2 sin bx c d
ax
= 2 e
1 4 1 2 4 0
MIT SOE
Now, inverse Fourier Sine Transform, we have
2
f x FS sin x d
0
2 3
0
1 4
2 2
sin x d
e x e2 x
6
sin x d
x 2 x
e e
0 2
1 2 4
MIT SOE
Exercise
Exercise
Exercise
1 0
1 10 01 1
1. Solve 1 0 the 1 integral equation
f x x dx 2 1
sin
1.
1. Solve the integralExercise equation 0 f0 fx sin
0 xdxx dx
x sin 2 21 12. 2 .
x sin x dx 2 1 2 . 0 2 0
Solve the integral equation
0
0 1 02 1
2 2cos
cos 2 x 2cos 2 x 1
1. Solve
Ans: f
x
2
cos
x
the
x
2cos
2
2cos
x
2
x
1
1
integral
equation f x sin x dx 2 1 2 .
Ans: f x
Ans: f x
0
0
x x 2
x
2 x 2 x
2.
Solve the 2
following cos x
integral2cos 2 x
equation 1
f x
sin fsin xxsin
x dx e
xedx
,
e 0 .
, . 21Ans:
0 Ans:
Ans: 2x
2. Solve
2. SolveAns:
thef
the x
following
following integral
integral equation 0
equation
0 f x dx , 0 . 2 1 x 2
x
1 x
0
x
2 x 1 0 1
. Ans: 2 e 1 0 .1 10Ans:
21 x
2. Solve the 1 x
following
3. Solve the following integral
integral equation
equation 0
ff xx sin
sin xxdxdx ,1
1
1 2
0 2 2
3. SolveSolvethe thefollowing
following integral equation
integral 0
equation 0 0 f x
sin
f
x x dx
sin
0
x
dx
1
2 1 1
2 1 x
0 1 0 1 2
0 0 1 2
2 2cos x 3cos 2 x 1 sin 2 x
3. 2 Solve the following integral equation 0 fAns:
x sinf xx dx
2 2cos 1 1x3cos 22 x 1 sin 2 x
Ans: f x
x 3cos
x 2 x2 1 sin 2 x
2
2 x 2cos
2 Ans: f x 0 x 2 x
x x2
2 2cos x 3cos 2 x 1 sin 2 x 2 2cos x 3cos 2 x 1 sin 2 x
Ans: f x
x 3cos 2 x 1 sin
2
x
2 x x 2 Ans: f x
x x
x x 2
MIT SOE