The Fourier Transforms: N N N X L C
The Fourier Transforms: N N N X L C
∞
f (x) = 9
π2
1
n2
sin nπ
3
sin nπLx ; a = c
2L
n=1
∞
f (x) = 32
3π 2
1
n2
sin nπ
4
sin nπLx ; a = c
2L
n=1
f (x) = 1
π
+ 1
2
sin ωt − 2
π
1
n2 −1
cos nωt
n=2,4,6,...
Extracted from graphs and formulas, pages 372, 373, Differential Equations in Engineering Problems, Salvadori and Schwarz,
published by Prentice-Hall, Inc.,1954.
For a piecewise continuous function F (x) over a finite interval 0 ≤ x ≤ π; the finite Fourier cosine transform of F (x) is
π
fc (n) = F (x) cos nx dx (n = 0, 1, 2, . . . )
0
If x ranges over the interval 0 ≤ x ≤ L, the substitution x = π x/L allows the use of this definition, also. The inverse transform is
written.
2
x
1
F (x) = fc (0) − fc (n) cos nx (0 < x < π)
π π n=1
and
2
∞
F (x) = fs (n) sin nx (0 < x < π)
π n=1
A-62
The Fourier Transforms A-63
x
2
F (x) = fc (α) cos(αx) dα.
π 0
x
2 d2r F
fc(2r ) (α) = cos(αx) dx
π 0 dx2r
(3)
2
r −1
=− (−1) n a2r −2n−1 α 2n + (−1)r α 2r fc (α)
π n=0
where limx→∞ dr F /dxr = ar, makes it useful in the solution of many problems.
Under the same conditions.
x
2
fs (α) = F (x) sin(αx) dx
π 0
x
2
F (x) = fs (α) sin(αx) dα
π 0
∞
2 d2r F
fs(2r ) (α) = sin(αx) dx (4)
π 0 dx2r
2
r
= − (−1) n α 2n−1 a2r −2n + (−1)r −1 α 2r fs (α)
π n=1
∞
1
f (α) = √ F (x)eiax dx
2π −∞
∞
1
F (x) = √ f (α)e−iax dα
2π −∞
Also, if
n
d F
lim n = 0 (n = 1, 2, . . . , r − 1)
|x|→∞ dx
then
∞
1
f (r ) (α) = √ F (r ) (x)eiαx dx = (−iα)r f (α)
2π −∞
A-64 The Fourier Transforms
π fs (n) F (x)
1 fs (n) = 0
F (x) sin nx dx (n = 1, 2, . . . ) F (x)
2 (−1) n+1
fs (n) F (π − x)
1 π−x
3 n π
(−1) n+1 x
4 n π
1−(−1) n
5 n
1
⎧
⎪
⎪ when 0 < x < π/2
⎨x
2
6 sin nπ
n2 ⎪
⎩π − x when π/2 < x < π
2
⎪
(−1) n+1 x(π 2 −x2 )
7 n3 6π
1−(−1) n x(π−x)
8 n3 2
11 n
n2 +c2
[1 − (−1) n ecπ ] ecx
n sinh c(π−x)
12 n2 +c2 sinh cπ
fs (n) F (x)
13 n
n2 −k2
(k = 0, 1, 2, . . . ) sin k(π−x)
sin kπ
⎧
⎨ π2 when n = m
14 (m = 1, 2, . . . ) sin mx
⎩
0 when n = m
n
15 [1 − (−1) n cos kπ] cos kx
n2 − k2
⎧ (k = 1, 2, . . . )
⎪ n
⎨ n2 −m2 [1 − (−1) n+m]
16 when n = m = 1, 2, . . . cos mx
⎪
⎩
0 when n = m
π sin kx
17 n
(n −k )
2 2 2 (k =
0, 1, 2, . . .) 2k sin2 kπ
− x cos k(π−x)
2k sin kπ
bn
18 n
(|b| ≤ 1) 2
π
b sin x
arctan 1−b cos x
1−(−1) n n
19 n
b (|b| ≤ 1) 2
π
arctan 2b sin x
1−b 2
The Fourier Transforms A-65
π fc (n) F (x)
1 fc (n) = 0 F (x) cos nx dx (n = 0, 1, 2, . . . ) F (x)
2 (−1) n fc (n) F (π − x)
3 0 when n = 1, 2, · · · ; fc (0) = π 1
#
1 when 0 < x < π/2
4 2
sin nπ ; fc (0) = 0
n 2
−1 when π/2 < x < π
n 2
5 − 1−(−1)n2
; fc (0) = π2 x
(−1) n 2 x2
6 n2
; fc (0) = π6 2π
(π−x) 2 π
7 n12 ; fc (0) = 0 2π
− 6
n n 4
8 3π 2 (−1) n2
− 6 1−(−1)
n4
; fc (0) = π4 x3
(−1) n ec π −1 1 cx
9 n2 +c2 c
e
1 coshc(π−x)
10 n2 +c 2 csinhcπ
k
11 [( − 1) n cos π k − 1](k = 0, 1, 2, · · · ) sin kx
n2 − n+m
k2
−1
12 (−1) n2 −m2
; fc (m) = 0 (m = 1, 2, · · · ) 1
m
sin mx
13 # 1
n2 −k2
(k = 0, 1, 2, . . . ) − cosk sin
k(π−x)
kπ
0 for n = 1, 2, · · · ; n = m
14 π
cos mx for m = 1, 2, 3, . . .
2
for n = m
# F (x) fs (α)
1 (0 < x < a) 2
1−cos α
1 π α
0 (x > a)
( p) pπ
2 x p−1 (0 < p < 1) 2
sin
# π αp 2
sin x (0 < x < a)
sin[a(1−α)] sin[a(1+α)]
3 √1 −
0 (x > a) 2π 1−α 1+α
α
4 e−x 2
π 1+α 2
2 /2 2
5 xe−x αe −α /2
2 2 ∗
x2
√ 2 2
6 cos 2 sin α2 C α2 − cos α2 S α2
√ 2 2 ∗
2
x2 2 2
7 sin 2
2 cos α2 C α2 + sin α2 S α2
# F (x) fc (α)
1 (0 < x < a) 2 sin aα
1 π α
0 (x > a)
2 ( p) pπ
2 x p−1 (0 < p < 1) cos
# π αp 2
cos x (0 < x < a)
sin[a(1−α)] sin[a(1+α)]
3 √1 +
0 (x > a) 2π 1−α 1+α
4 e−x π
2 1
1+α 2
2 /2 −α 1 /2
5 e−x e
x2 α2 π
6 cos cos −
2
2 4
x2 α2 π
7 sin 2
cos 2
+ 4
Fourier Transforms
F (x) ! π f (α)
sin ax 2
|α| < a
1
!
x 0 |α| > a
eiwx ( p < x < q) √i e
i p(w+α) −eiq(w+α)
2
! 0−cx+iwx (x < p, x > q) 2π (w+α)
e (x > 0)
3 (c > 0) √ i
0 (x < 0) 2π(w+α+ic)
√1 e−α
2 2 /4 p
4 e− px R( p) > 0
2p
√1 cos α2 π
5 cos px2 4p
− 4
2p
√1 cos α2 π
6 sin px2 4p
+ 4
2p
(1− p) sin pπ
7 |x|− p (0 < p < 1) 2
π |α|(1− p)
2
√
√(a +α )+a
−a|x| 2 2
e√
8 |x| a 2 +α 2
a α
2 cos 2 cosh 2
9 cosh ax
cosh π x
(−π < a < π) π cosh α+cos a
10 sinh ax
(−π < a < π) √1 sin a
#
sinh π x 2π cosh α+cos a
√1 (|x| < a) π
11 2 a −x
2
J 0 (aα)
2
0 (|x| > a) !
√
0
√ (|α| > b)
√ a +x ]
2 2
12
sin[b
π
! a 2 +x2 2
J 0 (a b2 − α 2 ) (|α| < b)
pn (x) (|x| < 1) in
13 √ J n+ 1 (α)
⎧ 0 (|x| > 1) α 2
√
⎨ cos[b a 2 −x2 ]
√ π √
(|x| < a)
14 a −x
2 2 J 0 (a a 2 + b2 )
⎩ 0 (|x| > a)
2
⎧ √
⎨ cosh[b a −x ]
√
2 2
π √
(|x| < a)
15 2 a −x
2 J 0 (a α 2 − b2 )
⎩ 0 (|x| > a)
2
*More extensive tables of Fourier transforms can be found in W. Magnus and F . Oberhettinger, Formulas and Theorems of the
Special Functions of Mathematical Physics. Chelsea, 1949, 116–120.
SERIES EXPANSION
The expression in parentheses following certain of the series indicates the region of convergence. If not otherwise indicated it is to
be understood that the series converges for all finite values of x.
Binomial Series
n(n − 1) n−2 2 n(n − 1)(n − 2) n−3 3
(x + y) n = xn + nxn−1 y + x y + x y + · · · ( y2 < x2 )
2! 3!
n(n − 1)x2 n(n − 1)(n − 2)x3
(1 ± x) n = 1 ± nx + ± + · · · (x2 < 1)
2! 3!
n(n + 1)x2 n(n + 1)(n + 2)x3
(1 ± x) −n = 1 ∓ nx + ∓ + · · · (x2 < 1)
2! 3!
(1 ± x) −1 = 1 ∓ x + x2 ∓ x3 + x4 ∓ x5 + · · · (x2 < 1)
(1 ± x) −2 = 1 ∓ 2x + 3x2 ∓ 4x3 + 5x4 ∓ 6x5 + · · · (x2 < 1)
Reversion of Series
Let a series be represented by
y = a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 + · · ·
with a1 = 0. The coefficients of the series
x = A1 y + A2 y2 + A3 y3 + A4 y4 + · · ·
A-66