0% found this document useful (0 votes)
136 views2 pages

Unit - Iv Fourier Transforms: Some Important Formulae

The document provides important formulae related to Fourier transforms. It defines the Fourier transform pair, Fourier cosine transform pair, and Fourier sine transform pair. It also lists properties of Fourier transforms including linearity, shifting theorems, scaling properties, derivatives of transforms, and the modulation theorem. Parseval's identity is defined for Fourier, cosine and sine transforms relating integrals of the function and transform.

Uploaded by

Abhishek
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
136 views2 pages

Unit - Iv Fourier Transforms: Some Important Formulae

The document provides important formulae related to Fourier transforms. It defines the Fourier transform pair, Fourier cosine transform pair, and Fourier sine transform pair. It also lists properties of Fourier transforms including linearity, shifting theorems, scaling properties, derivatives of transforms, and the modulation theorem. Parseval's identity is defined for Fourier, cosine and sine transforms relating integrals of the function and transform.

Uploaded by

Abhishek
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

UNIT – IV FOURIER TRANSFORMS

Some Important Formulae

Fourier Cosine Transform


Fourier Transform Pair Fourier Sine Transform Pair
Pair
  
1 2 2
Transform F[f(x)]=

2  
f ( x )e isx dx FC[f(x)]=  f ( x) cos sxdx
 0
FS[f(x)]=
  f ( x) sin sxdx
0
 F(s)  FC (s )  FS (s)
  
1 2 2
Inverse
Transform
f(x) = 
2  
F(s)e i sx ds f(x) =
  FC (s) cos sxds
0
f(x) =
  F (s) sin sxds
S
0

Fourier Fourier Cosine Fourier Sine


Integral Formula Integral Formula Integral Formula
   
f(x) = 1   f (t ) cos( x  t ) s dtds 2 2
 0 
f ( x) 
 
0 0
f (t ) cos sx cos st dt ds f ( x) 
  f (t )sin sx sin st dt ds
0 0

Convolution of two functions:



1
f ( x) * g ( x) 
2 

f (t ) g ( x  t ) dt

Convolution Theorem:
If F[f(x)]= F(s) and F[g(x)]= G(s) then

F  f ( x)* g ( x)  F  s   G  s 
Note: F 1  F  s  G  s   f ( x)* g ( x)

Parseval’s Identity for Fourier transform:


If F[ f ( x)]  F (s) then
 

 f ( x) dx  
2 2
F ( s) ds
 
Parseval’s Identity for Fourier cosine transform:
If Fc [ f ( x)]  Fc (s) and Fc [g( x)]  Gc (s) then
 

 f ( x) dx   Fc ( s) ds and
2 2

0 0
 


0
f ( x) g ( x) dx   Fc ( s) Gc ( s) ds
0

Parseval’s Identity for Fourier sine transform:


If Fs [ f ( x)]  Fs (s) and Fs [g( x)]  Gs (s) then
 

 f ( x) dx   Fs ( s) ds and
2 2

0 0
 


0
f ( x) g ( x) dx   Fs ( s) Gs ( s) ds
0
PROPERTIES

S.No Property Complex F.T Fourier Cosine Fourier Sine


F[af(x) + bg(x)]= FC[af(x)+bg(x)]= FS[af(x) + bg(x)]=
1. Linearity
a F[f(x)] +b F[g(x)] aFC[f(x)]+bFC[g(x)] aFS[f(x)]+bFS[g(x)]
Shifting F[f(x-a)]=eiasF[f(x)]
2. - -
Theorem = eiasF(s)
Shifting in
3. F[eiaxf(x)] = F(s-a) - -
respect to s
Change of 1
4. F[f(ax)] = F(s/a) FC[f(ax)] = 1/a FC (s/a) FS[f(ax)] = 1/a FS (s/a)
Scale a
d
F[xf(x)] = (-i) [F(s)] d
Derivative of ds FC[xf(x)] = [FS (s)] d
5. ds FS[xf(x)] =  [Fc (s)]
Transform ds
F[xnf(x)]= (-i)ndnF/dsn (Relation between FC & FS)
F[f ’(x)] = (-is)F(s)
Transform 2
6. FC[f ’(x)] =  f(0) + sFS(s) FS [f ‘(x)] = - sFc(s)
of derivative n n
F[d f/dx ] = (-is) F(s) n

i) F  f ( x)   F ( s)
Conjugate
7. symmetry ii) F  f ( x)   F (s) - -
property
iii)F[f(-x)] = F(-s)
i) F[f(x)cosax]= i) Fc[f(x)cosax]=
i) Fs[f(x)cosax]=
1 1
[F(s+a)+F(s–a)] [Fc(s+a)+Fc(s-a)] 1
2 2 [Fs(s+a)+Fs(s– a)]
Modulation 2
8. ii) F[f(x)sinax]= ii) Fc[f(x)sinax]=
Theorem ii) Fs[f(x)sinax]=
1 1
[F(s+a)-F(s-a)] [Fs(s+a)-Fs(s-a)] 1
2i 2 [Fc(s-a)-Fc(s+ a)]
2
Fourier x  F(s)
9. Transform F  f ( x )dx  = - -
of Integral a  (-is)

You might also like