UNIT – IV FOURIER TRANSFORMS
Some Important Formulae
Fourier Cosine Transform
Fourier Transform Pair Fourier Sine Transform Pair
Pair
1 2 2
Transform F[f(x)]=
2
f ( x )e isx dx FC[f(x)]= f ( x) cos sxdx
0
FS[f(x)]=
f ( x) sin sxdx
0
F(s) FC (s ) FS (s)
1 2 2
Inverse
Transform
f(x) =
2
F(s)e i sx ds f(x) =
FC (s) cos sxds
0
f(x) =
F (s) sin sxds
S
0
Fourier Fourier Cosine Fourier Sine
Integral Formula Integral Formula Integral Formula
f(x) = 1 f (t ) cos( x t ) s dtds 2 2
0
f ( x)
0 0
f (t ) cos sx cos st dt ds f ( x)
f (t )sin sx sin st dt ds
0 0
Convolution of two functions:
1
f ( x) * g ( x)
2
f (t ) g ( x t ) dt
Convolution Theorem:
If F[f(x)]= F(s) and F[g(x)]= G(s) then
F f ( x)* g ( x) F s G s
Note: F 1 F s G s f ( x)* g ( x)
Parseval’s Identity for Fourier transform:
If F[ f ( x)] F (s) then
f ( x) dx
2 2
F ( s) ds
Parseval’s Identity for Fourier cosine transform:
If Fc [ f ( x)] Fc (s) and Fc [g( x)] Gc (s) then
f ( x) dx Fc ( s) ds and
2 2
0 0
0
f ( x) g ( x) dx Fc ( s) Gc ( s) ds
0
Parseval’s Identity for Fourier sine transform:
If Fs [ f ( x)] Fs (s) and Fs [g( x)] Gs (s) then
f ( x) dx Fs ( s) ds and
2 2
0 0
0
f ( x) g ( x) dx Fs ( s) Gs ( s) ds
0
PROPERTIES
S.No Property Complex F.T Fourier Cosine Fourier Sine
F[af(x) + bg(x)]= FC[af(x)+bg(x)]= FS[af(x) + bg(x)]=
1. Linearity
a F[f(x)] +b F[g(x)] aFC[f(x)]+bFC[g(x)] aFS[f(x)]+bFS[g(x)]
Shifting F[f(x-a)]=eiasF[f(x)]
2. - -
Theorem = eiasF(s)
Shifting in
3. F[eiaxf(x)] = F(s-a) - -
respect to s
Change of 1
4. F[f(ax)] = F(s/a) FC[f(ax)] = 1/a FC (s/a) FS[f(ax)] = 1/a FS (s/a)
Scale a
d
F[xf(x)] = (-i) [F(s)] d
Derivative of ds FC[xf(x)] = [FS (s)] d
5. ds FS[xf(x)] = [Fc (s)]
Transform ds
F[xnf(x)]= (-i)ndnF/dsn (Relation between FC & FS)
F[f ’(x)] = (-is)F(s)
Transform 2
6. FC[f ’(x)] = f(0) + sFS(s) FS [f ‘(x)] = - sFc(s)
of derivative n n
F[d f/dx ] = (-is) F(s) n
i) F f ( x) F ( s)
Conjugate
7. symmetry ii) F f ( x) F (s) - -
property
iii)F[f(-x)] = F(-s)
i) F[f(x)cosax]= i) Fc[f(x)cosax]=
i) Fs[f(x)cosax]=
1 1
[F(s+a)+F(s–a)] [Fc(s+a)+Fc(s-a)] 1
2 2 [Fs(s+a)+Fs(s– a)]
Modulation 2
8. ii) F[f(x)sinax]= ii) Fc[f(x)sinax]=
Theorem ii) Fs[f(x)sinax]=
1 1
[F(s+a)-F(s-a)] [Fs(s+a)-Fs(s-a)] 1
2i 2 [Fc(s-a)-Fc(s+ a)]
2
Fourier x F(s)
9. Transform F f ( x )dx = - -
of Integral a (-is)