ST72C334J4B6
ST72C334J4B6
ST72314J/N, ST72124J
8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY,
ADC, 16-BIT TIMERS, SPI, SCI INTERFACES
PRODUCT PREVIEW
Device Summary
Features ST72124J2 ST72314J2 ST72314J4 ST72314N2 ST72314N4 ST72334J2 ST72334J4 ST72334N2 ST72334N4
Program memory - bytes 8K 8K 16K 8K 16K 8K 16K 8K 16K
RAM (stack) - bytes 384 (256) 384 (256) 512 (256) 384 (256) 512 (256) 384 (256) 512 (256) 384 (256) 512 (256)
EEPROM - bytes - - - - - 256 256 256 256
Watchdog,
16-bit Tim-
Peripherals Watchdog, 16-bit Timers, SPI, SCI, ADC
ers, SPI,
SCI
Operating Supply 3.0V to 5.5V
CPU Frequency 500 kHz to 8 MHz (with 1 to 16 MHz oscillator)
Operating Temperature -40°C to +85°C (-40°C to +105/125°C optional)
Packages TQFP44 / SDIP42 TQFP64 / SDIP56 TQFP44 / SDIP42 TQFP64 / SDIP56
Rev. 1.0
2/125
2
Table of Contents
6.2.2 I/O Port Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3 Miscellaneous Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.4 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 8-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.7.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.7.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.7.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.7.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3/125
3
Table of Contents
7.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.1 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.3 DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 GENERAL TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.5 I/O PORT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.6 SUPPLY, RESET AND CLOCK CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6.1 Supply Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6.2 Reset Sequence Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6.3 Multi-Oscillator, Clock Security System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.7 MEMORY AND PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9 GENERAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1 PACKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.1 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.2 User-supplied TQFP64 Adaptor / Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.1.3 User-supplied TQFP44 Adaptor / Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.2 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . 121
9.2.1 Option Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2.2 Transfer Of Customer Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
125
4/125
Table of Contents
1 PREAMBLE: ST72C334 VERSUS ST72E331 SPECIFICATION
New Features available on the ST72C334
■ 8 or 16K FLASH/ROM with In-Situ Programming and Read-out protection
■ New power saving mode with real time base: Active Halt
■ New interrupt source: Clock security system (CSS) or Main clock controller (MCC)
■ PA6 and PA7 are true open drain I/O ports without pull-up (same as ST72E331)
■ PA3, PB3, PB4 and PF2 have no pull-up configuration (all IOs present on TQFP44)
■ PA5:4, PC3:2, PE7:4 and PF7:6 have high sink capabilities (20mA on N-buffer, 2mA on P-buffer and
pull-up). On the ST72E331, all these pads (except PA5:4) were 2mA push-pull pad without high sink
capabilities. PA4 and PA5 were 20mA true open drain.
New Memory Locations in ST72C334
■ 20h: MISCR register becomes MISCR1 register (naming change)
■ 2Bh: new control/status register for the Clock, Reset and Supply control. This register replaces the
WDGSR register keeping the WDOGF flag compatibility.
■ 40h: new MISCR2 register
5/125
4
ST72334J/N, ST72314J/N, ST72124J
2 GENERAL DESCRIPTION
2.1 INTRODUCTION
The ST72334J/N, ST72314J/N and ST72124J de- The ST72C334J/N, ST72C314J/N and
vices are members of the ST7 microcontroller fam- ST72C124J versions feature single-voltage
ily. They can be grouped as follows: FLASH memory with byte-by-byte In-Situ Pro-
– ST72334J/N devices are designed for mid-range gramming (ISP) capability.
applications with Data EEPROM, ADC, SPI and Under software control, all devices can be placed
SCI interface capabilities. in WAIT, SLOW, ACTIVE-HALT or HALT mode,
– ST72314J/N devices target the same range of reducing power consumption when the application
applications but without Data EEPROM. is in idle or standby state.
– ST72124J devices are for applications that do The enhanced instruction set and addressing
not need Data EEPROM and the ADC peripher- modes of the ST7 offer both power and flexibility to
al. software developers, enabling the design of highly
efficient and compact application code. In addition
All devices are based on a common industry- to standard 8-bit data management, all ST7 micro-
standard 8-bit core, featuring an enhanced instruc- controllers feature true bit manipulation, 8x8 un-
tion set. signed multiplication and indirect addressing
modes.
Figure 1. Device Block Diagram
VSSA SPI
VDDA
PORT F
RESET PF7,6,4,2:0
CONTROL (6 bits)
VPP/TES T AND LVD TIMER A
8-BIT CORE
PORT E
ALU
PE7:0
(6 bits for N versions)
SCI (2 bits for J versions)
PROGRAM
MEMORY
(8 or 16K Bytes)
WATCH DOG
Data-EEPROM RAM
(256 Bytes) (384 or 512 Bytes)
6/125
5
ST72334J/N, ST72314J/N, ST72124J
PE0 / TDO
PE1 / RDI
PA7 (HS)
PA6 (HS)
PA5 (HS)
PA4 (HS)
ISPSEL
RESET
VDD_2
VSS_2
OSC1
OSC2
NC
NC
NC
NC
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
(HS) PE4 1 48 VSS_1
(HS) PE5 2 47 VDD_1
(HS) PE6 3 46 PA3
(HS) PE7 4 45 PA2
EI0
PB0 5 44 PA1
PB1 6 43 PA0
PB2 7 EI2 42 PC7 / SS
PB3 8 41 PC6 / SCK / ISPCLK
PB4 9 40 PC5 / MOSI
PB5 10 39 PC4 / MISO / ISPDATA
PB6 11 EI3 38 PC3 (HS) / ICAP1_B
PB7 12 37 PC2 (HS) / ICAP2_B
AIN0 / PD0 13 36 PC1 / OCMP1_B
AIN1 / PD1 14 35 PC0 / OCMP2_B
AIN2 / PD2 15 EI1 34 VSS_0
AIN3 / PD3 16 33 VDD_0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD_3
VSSA
VDDA
AIN4 / PD4
AIN5 / PD5
AIN6 / PD6
AIN7 / PD7
VSS_3
MCO / PF0
BEEP / PF1
PF2
NC
OCMP1_A / PF4
NC
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
7/125
6
ST72334J/N, ST72314J/N, ST72124J
PB4 1 56 PB3
PB5 2 55 PB2
EI3 EI2
PB6 3 54 PB1
PB7 4 53 PB0
AIN0 / PD0 5 52 PE7 (HS)
AIN1 / PD1 6 51 PE6 (HS)
AIN2 / PD2 7 50 PE5 (HS)
AIN3 / PD3 8 49 PE4 (HS)
AIN4 / PD4 9 48 PE1 / RDI
AIN5 / PD5 10 47 PE0 / TDO
AIN6 / PD6 11 46 VDD_2
AIN7 / PD7 12 45 OSC1
VDDA 13 44 OSC2
VSSA 14 43 VSS_2
MCO / PF0 15 42 RESET
BEEP / PF1 16 EI1 41 ISPSEL
PF2 17 40 PA7 (HS)
OCMP1_A / PF4 18 39 PA6 (HS)I
ICAP1_A / (HS) PF6 19 38 PA5 (HS)
EXTCLK_A / (HS) PF7 20 37 PA4 (HS)
VDD_0 21 36 VSS_1
VSS_0 22 35 VDD_1
OCMP2_B / PC0 23 34 PA3
OCMP1_B / PC1 24 33 PA2
EI0
ICAP2_B / (HS) PC2 25 32 PA1
ICAP1_B / (HS) PC3 26 31 PA0
ISPDATA/ MISO / PC4 27 30 PC7 / SS
MOSI / PC5 28 29 PC6 / SCK / ISPCLK
8/125
ST72334J/N, ST72314J/N, ST72124J
PE0 / TDO
PA7 (HS)
PA6 (HS)
PA5 (HS)
PA4 (HS)
ISPSEL
RESET
VDD_2
VSS_2
OSC1
OSC2
44 43 42 41 40 39 38 37 36 35 34
PE1 / RDI 1 33 VSS_1
PB0 2 32 VDD_1
PB1 3 EI0 31 PA3
EI2
PB2 4 30 PC7 / SS
PB3 5 29 PC6 / SCK / ISPCLK
PB4 6 EI3 28 PC5 / MOSI
AIN0 / PD0 7 27 PC4 / MISO / ISPDATA
AIN1 / PD1 8 26 PC3 (HS) / ICAP1_B
AIN2 / PD2 9 25 PC2 (HS) / ICAP2_B
AIN3 / PD3 10 EI1 24 PC1 / OCMP1_B
AIN4 / PD4 11 23 PC0 / OCMP2_B
12 13 14 15 16 17 18 19 20 21 22
VSSA
VDDA
AIN5 / PD5
VSS_0
MCO / PF0
BEEP / PF1
PF2
OCMP1_A / PF4
ICAP1_A / (HS) PF6
EXTCLK_A / (HS) PF7
VDD_0
9/125
ST72334J/N, ST72314J/N, ST72124J
Output function
TQFP64
Input
Output
SDIP56
SDIP42
Input
(after
float
wpu
ana
OD
PP
int
reset)
1 49 PE4 (HS) I/O CT HS X X X X Port E4
2 50 PE5 (HS) I/O CT HS X X X X Port E5
3 51 PE6 (HS) I/O CT HS X X X X Port E6
4 52 PE7 (HS) I/O CT HS X X X X Port E7
5 53 2 39 PB0 I/O CT X EI2 X X Port B0
6 54 3 40 PB1 I/O CT X EI2 X X Port B1
7 55 4 41 PB2 I/O CT X EI2 X X Port B2
8 56 5 42 PB3 I/O CT X EI2 X X Port B3
9 1 6 1 PB4 I/O CT X EI3 X X Port B4
10 2 PB5 I/O CT X EI3 X X Port B5
11 3 PB6 I/O CT X EI3 X X Port B6
12 4 PB7 I/O CT X EI3 X X Port B7
13 5 7 2 PD0/AIN0 I/O CT X X X X X Port D0 ADC Analog Input 0
14 6 8 3 PD1/AIN1 I/O CT X X X X X Port D1 ADC Analog Input 1
15 7 9 4 PD2/AIN2 I/O CT X X X X X Port D2 ADC Analog Input 2
16 8 10 5 PD3/AIN3 I/O CT X X X X X Port D3 ADC Analog Input 3
17 9 11 6 PD4/AIN4 I/O CT X X X X X Port D4 ADC Analog Input 4
18 10 12 7 PD5/AIN5 I/O CT X X X X X Port D5 ADC Analog Input 5
19 11 PD6/AIN6 I/O CT X X X X X Port D6 ADC Analog Input 6
20 12 PD7/AIN7 I/O CT X X X X X Port D7 ADC Analog Input 7
21 13 13 8 VDDA S Analog Power Supply Voltage
22 14 14 9 VSSA S Analog Ground Voltage
23 VDD_3 S Digital Main Supply Voltage
24 VSS_3 S Digital Ground Voltage
25 15 15 10 PF0/MCO I/O CT X EI1 X X Port F0 Main clock output (fOSC/2)
26 16 16 11 PF1/BEEP I/O CT X EI1 X X Port F1 Beep signal output
27 17 17 12 PF2 I/O CT X EI1 X X Port F2
28 NC Not Connected
10/125
ST72334J/N, ST72314J/N, ST72124J
Type
Output function
TQFP64
Input
Output
SDIP56
SDIP42
Input
(after
float
wpu
ana
OD
PP
int
reset)
29 18 18 13 PF4/OCMP1_A I/O CT X X X X Port F4 Timer A Output Compare 1
30 NC Not Connected
31 19 19 14 PF6 (HS)/ICAP1_A I/O CT HS X X X X Port F6 Timer A Input Capture 1
32 20 20 15 PF7 (HS)/EXTCLK_A I/O CT HS X X X X Port F7 Timer A External Clock Source
33 21 21 VDD_0 S Digital Main Supply Voltage
34 22 22 VSS_0 S Digital Ground Voltage
35 23 23 16 PC0/OCMP2_B I/O CT X X X X Port C0 Timer B Output Compare 2
36 24 24 17 PC1/OCMP1_B I/O CT X X X X Port C1 Timer B Output Compare 1
37 25 25 18 PC2 (HS)/ICAP2_B I/O CT HS X X X X Port C2 Timer B Input Capture 2
38 26 26 19 PC3 (HS)/ICAP1_B I/O CT HS X X X X Port C3 Timer B Input Capture 1
39 27 27 20 PC4/MISO I/O CT X X X X Port C4 SPI Master In / Slave Out Data
40 28 28 21 PC5/MOSI I/O CT X X X X Port C5 SPI Master Out / Slave In Data
41 29 29 22 PC6/SCK I/O CT X X X X Port C6 SPI Serial Clock
42 30 30 23 PC7/SS I/O CT X X X X Port C7 SPI Slave Select (active low)
43 31 PA0 I/O CT X EI0 X X Port A0
44 32 PA1 I/O CT X EI0 X X Port A1
45 33 PA2 I/O CT X EI0 X X Port A2
46 34 31 24 PA3 I/O CT X EI0 X X Port A3
47 35 32 25 VDD_1 S Digital Main Supply Voltage
48 36 33 26 VSS_1 S Digital Ground Voltage
49 37 34 27 PA4 (HS) I/O CT HS X X X X Port A4
50 38 35 28 PA5 (HS) I/O CT HS X X X X Port A5
51 39 36 29 PA6 (HS) I/O CT HS X T Port A6
52 40 37 30 PA7 (HS) I/O CT HS X T Port A7
Must be tied low in user mode. In pro-
gramming mode when available, this pin
53 41 38 31 ISPSEL I
acts as In-Situ Programming mode se-
lection.
Top priority non maskable interrupt (ac-
54 42 39 32 RESET I/O C X X
tive low)
55 NC
Not Connected
56 NC
57 43 40 33 VSS_3 S Digital Ground Voltage
58 44 41 34 OSC2 These pins connect a parallel-resonant
crystal or an external clock source to the
59 45 42 35 OSC1 on-chip main oscillator.
60 46 43 36 VDD_3 S Digital Main Supply Voltage
61 47 44 37 PE0/TDO I/O CT X X X X Port E0 SCI Transmit Data Out
62 48 1 38 PE1/RDI I/O CT X X X X Port E1 SCI Receive Data In
63 NC
Not Connected
64 NC
11/125
ST72334J/N, ST72314J/N, ST72124J
0000h 0080h
HW Registers Short Addressing
(see Table 2) RAM (zero page)
007Fh 00FFh
0080h 0100h 256 Bytes Stack or
384 Bytes RAM
01FFh 01FFh
16-bit Addressing RAM
12/125
ST72334J/N, ST72314J/N, ST72124J
Register Reset
Address Block Register Name Remarks
Label Status
0017h
to Reserved Area (9 Bytes)
001Fh
0024h
to Reserved Area (5 Bytes)
0028h
0029h MCC MCCSR Main Clock Control / Status Register 01h R/W
13/125
ST72334J/N, ST72314J/N, ST72124J
Register Reset
Address Block Register Name Remarks
Label Status
002Bh CRSR Clock, Reset, Supply Control / Status Register 00h R/W
002Dh
Reserved Area (4 Bytes)
0030h
14/125
ST72334J/N, ST72314J/N, ST72124J
Register Reset
Address Block Register Name Remarks
Label Status
0058h
Reserved Area (24 Bytes)
006Fh
0072h
to Reserved Area (14 Bytes)
007Fh
Notes:
1) The bits corresponding to unavailable pins are forced to 1 by hardware, this affects the reset status value.
2) External pin not available.
3) Not used in versions without Low Voltage Detector Reset.
15/125
ST72334J/N, ST72314J/N, ST72124J
OSC1
10kΩ
An example Remote ISP hardware interface to the
standard ST7 programming tool is described be- VSS
low. For more details on ISP programming, refer to
the ST7 Programming Specification. RESET
ISPCLK
Remote ISP Overview ST7
The Remote ISP mode is initiated by a specific se- ISPDATA
quence on the dedicated ISPSEL pin.
4.7kΩ
The Remote ISP is performed in three steps:
– Selection of the RAM execution mode
APPLICATION
– Download of Remote ISP code in RAM
– Execution of Remote ISP code in RAM to pro- 2.5 Program Memory Read-out Protection
gram the user program into the FLASH
The read-out protection is enabled through an op-
Remote ISP hardware configuration tion bit.
In Remote ISP mode, the ST7 has to be supplied For FLASH devices, when this option is selected,
with power (VDD and VSS) and a clock signal (os- the program and data stored in the FLASH memo-
cillator and application crystal circuit for example). ry are protected against read-out piracy (including
a re-write protection). When this protection option
is removed the entire FLASH program memory is
first automatically erased.
1
16/125
ST72334J/N, ST72314J/N, ST72124J
FALLING
EEPROM INTERRUPT EDGE
DETECTOR
HIGH VOLTAGE
PUMP
RESERVED EEPROM
EECSR
0 0 0 0 0 IE LAT PGM
EEPROM
ADDRESS 4 ROW
MEMORY MATRIX
DECODER DECODER
(1 ROW = 16 x 8 BITS)
128 128
4 DATA 16 x 8 BITS
MULTIPLEXER DATA LATCHES
17/125
ST72334J/N, ST72314J/N, ST72124J
WRITE UP TO 16 BYTES
READ BYTES
IN EEPROM AREA
IN EEPROM AREA
(with the same 12 MSB of the address)
INTERRUPT GENERATION
IF IE=1 0 1
LAT
CLEARED BY HARDWARE
18/125
ST72334J/N, ST72314J/N, ST72124J
INTERNAL
PROGRAMMING
VOLTAGE
ERASE CYCLE WRITE CYCLE
WRITE OF
DATA LATCHES
t PROG
LAT
PGM
EEPROM INTERRUPT
19/125
ST72334J/N, ST72314J/N, ST72124J
7 0
0 0 0 0 0 IE LAT PGM
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
20/125
ST72334J/N, ST72314J/N, ST72124J
15 PCH 8 7 PCL 0
PROGRAM COUNTER
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
7 0
1 1 1 H I N Z C
CONDITIO N CODE REGISTER
RESET VALUE = 1 1 1 X 1 X X X
15 8 7 0
STACK POINTER
RESET VALUE = STACK HIGHER ADDRESS
X = Undefined Value
21/125
ST72334J/N, ST72314J/N, ST72124J
22/125
ST72334J/N, ST72314J/N, ST72124J
@ 0100h
SP
SP SP
Y
CC CC CC
A A A
X X X
PCH PCH PCH
SP SP
PCL PCL PCL
PCH PCH PCH PCH PCH
SP
@ 01FFh PCL PCL PCL PCL PCL
23/125
ST72334J/N, ST72314J/N, ST72124J
MCO
RESET SEQUEN CE
RESET MANAGER FROM
WATCH DOG
(RSM)
PERIP HERAL
24/125
ST72334J/N, ST72314J/N, ST72124J
VDD
HYSTE RESIS
VLVDhyst
VLVDr
VLVDf
RESET
25/125
ST72334J/N, ST72314J/N, ST72124J
VDD INTERNAL
f CPU RESET
COUNTER
RON
RESET
WATCHDOG RESET
LVD RESET
26/125
ST72334J/N, ST72314J/N, ST72124J
VDD
VDDnominal
VLVDf
SHORT PULSE ON RESET PIN
RESET
RUN INTERNAL RESET FETCH
RUN
DELAY
4096 CLOCK CYCLES VECTOR
tDE LAYmin
t PULSE
EXTERNAL RESET SOURCE
RESET PIN
WATCHDOG RESET
VDD
VDDnominal
VLVDf
RESET
LONG PULSE ON RESET PIN
RUN RUN
INTERNAL RESET FETCH
DELAY
4096 CLOCK CYCLES VECTOR
t PULSE
EXTERNAL RESET SOURCE
RESET PIN
WATCHDOG RESET
27/125
ST72334J/N, ST72314J/N, ST72124J
VDD
VDDnominal
VLVDr
RESET
RUN
POWER-ON RESET
RESET PIN
WATCHDOG RESET
VDD
VDDnominal
VLVDr
VLVDf
RESET
RUN RUN
VOLTAGE DROP RESET
RESET PIN
WATCHDOG RESET
28/125
ST72334J/N, ST72314J/N, ST72124J
VDD
VDDnominal
VLVDf
RESET
RUN RUN
INTERNAL RESET FETCH
DELAY
4096 CLOCK CYCLES VECTOR
tDE LAYmin
RESET PIN
WATCHDOG RESET
WATCHDOG UNDERFLOW
29/125
ST72334J/N, ST72314J/N, ST72124J
MULTI-OSCILLATOR (MO)
The main clock of the ST7 can be generated by 7 Crystal/Ceramic Oscillators
different sources coming from the multi-oscillator This family of oscillators has the advantage of pro-
block: ducing a high accuracy on the main clock of the
■ an external source ST7. The selection within a list of 4 oscillators with
■ 4 crystal or ceramic resonator oscillators different frequency ranges has to be done by OP-
■ 1 external RC oscillator
TION BYTE in order to reduce the consumption. In
this mode of the MO block, the resonator and the
■ 1 internal high frequency RC oscillator load capacitances have to be connected as shown
Each oscillator is optimized for a given frequency in Figure 20 and have to be mounted as close as
range in terms of consumption and is selectable possible to the oscillator pins in order to minimize
through the OPTION BYTE. output distortion and start-up stabilization time.
The loading capacitance values must be adjusted
External Clock Source according to the selected oscillator.
The default OPTION BYTE value selects the Ex- These oscillators, when selected via the OPTION
ternal Clock in the MO block. In this mode, a clock BYTE, are not stopped during the RESET phase
signal (square, sinus or triangle) with ~50% duty to avoid losing time in the oscillator start-up phase.
cycle has to drive the OSC1 pin while the OSC2
pin is tied to ground (see Figure 19).
Figure 19. MO External Clock Figure 20. MO Crystal/Ceramic Resonator
ST7
OSC1 OSC2
ST7
OSC1 OSC2
C L0 C L1
EXTERNAL LOAD
SOURCE CAPACITANCES
30/125
ST72334J/N, ST72314J/N, ST72124J
MULTI-OSCILLATOR (Cont’d)
External RC Oscillator Internal RC Oscillator
This oscillator allows a low cost solution for the The Internal RC oscillator mode is based on the
main clock of the ST7 using only an external resis- same principle as the External RC oscillator in-
tor and an external capacitor (see Figure 21). The cluding the resistance and the capacitance of the
selection of the external RC oscillator has to be device. This mode is the most cost effective one
done by OPTION BYTE. with the drawback of a lower frequency accuracy.
The frequency of the external RC oscillator (in the Its frequency is in the range of several MHz.
range of some MHz.) is fixed by the resistor and In this mode, the two oscillator pins have to be tied
the capacitor values: to ground as shown in Figure 22.
4 1)
fOSC ~ The selection of the internal RC oscillator has to
REX . CEX be done by OPTION BYTE.
The previous formula shows that in this MO mode,
the accuracy of the clock is directly linked to the
accuracy of the discrete components.
Figure 21. MO External RC Figure 22. MO Internal RC
ST7
OSC1 OSC2
ST7
OSC1 OSC2
REX CEX
Note:
1) This formula provides an approximation of the frequency with typical REX and CEX values at VDD=5V.
It is given only as design guidelines.
31/125
ST72334J/N, ST72314J/N, ST72124J
MAIN
OSCILLATOR
CLOCK
INTERNAL
ST7
CLOCK
SAFE
OSCILLATOR
CLOCK
INTERNAL
ST7
CLOCK
32/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
33/125
ST72334J/N, ST72314J/N, ST72124J
MCC
OSC2
fOSC
OSCILLATOR DIV 2
OSC1
DIV 2, 4, 8, 16
PROGRAMMABLE
DIVIDER
MCC INTERRUPT
PORT
MCO ALTERNATE fOSC/2
FUNCTION
34/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
35/125
ST72334J/N, ST72314J/N, ST72124J
5.1 INTERRUPTS
The ST7 core may be interrupted by one of two dif- Halt low power mode (refer to the “Exit from HALT“
ferent methods: maskable hardware interrupts as column in the Interrupt Mapping Table).
listed in the Interrupt Mapping Table and a non-
maskable software interrupt (TRAP). The Interrupt
processing flowchart is shown in Figure 26. External Interrupts
The maskable interrupts must be enabled clearing External interrupt vectors can be loaded in the PC
the I bit in order to be serviced. However, disabled register if the corresponding external interrupt oc-
interrupts may be latched and processed when curred and if the I bit is cleared. These interrupts
they are enabled (see external interrupts subsec- allow the processor to leave the Halt low power
tion). mode.
When an interrupt has to be serviced: The external interrupt polarity is selected through
– Normal processing is suspended at the end of the miscellaneous register or interrupt register (if
the current instruction execution. available).
– The PC, X, A and CC registers are saved onto External interrupt triggered on edge will be latched
the stack. and the interrupt request automatically cleared
upon entering the interrupt service routine.
– The I bit of the CC register is set to prevent addi-
tional interrupts. If several input pins, connected to the same inter-
rupt vector, are configured as interrupts, their sig-
– The PC is then loaded with the interrupt vector of nals are logically ANDed before entering the edge/
the interrupt to service and the first instruction of level detection block.
the interrupt service routine is fetched (refer to
the Interrupt Mapping Table for vector address- Warning: The type of sensitivity defined in the
es). Miscellaneous or Interrupt register (if available)
applies to the EI source. In case of an ANDed
The interrupt service routine should finish with the source (as described on the I/O ports section), a
IRET instruction which causes the contents of the low level on an I/O pin configured as input with in-
saved registers to be recovered from the stack. terrupt, masks the interrupt request even in case
Note: As a consequence of the IRET instruction, of rising-edge sensitivity.
the I bit will be cleared and the main program will Peripheral Interrupts
resume.
Different peripheral interrupt flags in the status
Priority management register are able to cause an interrupt when they
By default, the interrupt being serviced cannot be are active if both:
interrupted because the I bit is set by hardware – The I bit of the CC register is cleared.
when entering an interrupt routine.
– The corresponding enable bit is set in the control
If several interrupts are simultaneously pending, a register.
hardware priority defines which one will be serv-
iced first (see the Interrupt Mapping Table). If any of these two conditions is false, the interrupt
is latched and thus remains pending.
Non Maskable Software Interrupts
Clearing an interrupt request is done by:
This interrupt is entered when the TRAP instruc-
tion is executed regardless of the state of the I bit. – writing “0” to the corresponding bit in the status
It will be serviced according to the flowchart on register or
Figure 26. – an access to the status register while the flag is
set followed by a read or write of an associated
register.
Interrupts and Low power mode
Note: the clearing sequence resets the internal
All interrupts allow the processor to leave the Wait latch. A pending interrupt (i.e. waiting for being en-
low power mode. Only external and specific men- abled) will therefore be lost if the clear sequence is
tioned interrupts allow the processor to leave the executed.
36/125
ST72334J/N, ST72314J/N, ST72124J
INTERRUPTS (Cont’d)
Figure 26. Interrupt Processing Flowchart
FROM RESET
N
BIT I SET
Y N
BIT I SET
N
IRET
STACK PC, X, A, CC
Y SET I BIT
LOAD PC FROM INTERRUPT VECTO R
EXECU TE INSTRUCTION
37/125
ST72334J/N, ST72314J/N, ST72124J
POWER CONSUMPTION
The MCU can exit HALT or ACTIVE-HALT modes 1 ACTIVE-HALT (no reset if watchdog enabled)
on reception of an interrupt with Exit from Halt
Figure 28. HALT /ACTIVE-HALT Modes timing overview
RESET FETCH
HALT OR VECTOR
INSTRUCTION INTERRUPT
38/125
ST72334J/N, ST72314J/N, ST72124J
If WDGHA LT
bit reset in HALT INSTR UCTION
OPTION BYTE
MAIN 1
N WAT CHDOG Y 0
OSCILLATOR
ENABLE OIE BIT
HALT ACTIV E-HALT
N
RESET 4096 clock cycles delay
Notes: * External interrupt or internal interrupts with Exit from Halt Mode capability
** Before servicing an interrupt, the CC register is pushed on the stack.
39/125
ST72334J/N, ST72314J/N, ST72124J
OSCILLATOR ON
PERIPHERA LS ON
WFI INSTRUCTION
CPU OFF
I BIT 0
N
RESET
if exit caused by a RESET, a 4096 CPU
N Y
clock cycle delay is inserted.
INTERRUPT
Y
OSCILLATOR ON
PERIPHERALS ON
OSCILLATOR ON CPU ON
PERIPHERALS OFF* FETCH RESET VECTOR
CPU OFF OR SERVICE INTER RUPT**
Note: * The peripheral clock is stopped only when exit caused by RESET and not by an interrupt.
** Before servicing an interrupt, the CC register is pushed on the stack.
40/125
ST72334J/N, ST72314J/N, ST72124J
NEW FREQUENCY
ACTIV E WHEN NORMAL MODE ACTIVE
OSC/4 & OSC/8 = 0 (OSC/4, OSC/8 STOPPED)
fOSC/4
fOSC/8
fCPU
CP1:0 00 01
MISCR1
REGISTE R
SMS 1 0
NEW FREQUENCY
REQUEST NORMAL MODE
REQUEST
41/125
ST72334J/N, ST72314J/N, ST72124J
6 ON-CHIP PERIPHERALS
42/125
ST72334J/N, ST72314J/N, ST72124J
ALTERNATE
1
OUTPUT VDD P-BUFFER
(see table below)
0
ALTERNATE
PULL-UP
ENABLE
(see table below)
DR V DD
DDR
PULL-UP
PAD
CONDITION
OR
DATA BUS
If implemented
OR SEL
N-BUFFER
DIODES
(see table below)
DDR SEL
ANALOG
INPUT
CMOS
SCHMITT
DR SEL
1 TRIGGER
0
ALTERNATE
INPUT
EXTERNAL
FROM
INTERRUPT OTHER
SOURCE (EIx) BITS
POLARITY
SELECTION
Legend:NI - not implemented Note: the diode to VDD is not implemented in the
Off - implemented not activated true open drain pads. A local protection between
On - implemented and activated the pad and VSS is implemented to protect the de-
vice against positive stress.
43/125
ST72334J/N, ST72314J/N, ST72124J
6.1.3 I/O Port Implementation Switching these I/O ports from one state to anoth-
The I/O port register configurations are summa- er should be done in a sequence that prevents un-
rised as following. wanted side effects. Recommended safe transi-
tions are illustrated in Figure 33 Other transitions
Standard Ports are potentially risky and should be avoided, since
they are likely to present unwanted side-effects
PA5:4, PC7:0, PD7:0, PE7:4, PE1:0, PF7:6, PF4
such as spurious interrupt generation.
MODE DDR OR
Figure 33. Interrupt I/O Port State Transition
floating input 0 0
pull-up input 0 1
01 00 10 11
open drain output 1 0
push-pull output 1 1 INPUT INPUT OUTPUT OUTPUT
pull-up/floating floating open-drain push-pull
Interrupt Ports interrupt (reset state)
MODE DDR OR
floating input 0 0 True Open Drain Ports
pull-up interrupt input 0 1
PA7:6
open drain output 1 0
push-pull output 1 1 MODE DDR
floating input 0
PA3, PB7, PB3, PF2 (without pull-up)
open drain (high sink ports) 1
MODE DDR OR
floating input 0 0
floating interrupt input 0 1
open drain output 1 0
push-pull output 1 1
44/125
ST72334J/N, ST72314J/N, ST72124J
7 0 7 0
D7 D6 D5 D4 D3 D2 D1 D0 O7 O6 O5 O4 O3 O2 O1 O0
Bit 7:0 = D[7:0] Data register 8 bits. Bit 7:0 = O[7:0] Option register 8 bits.
The DR register has a specific behaviour accord- For specific I/O pins, this register is not implement-
ing to the selected input/output configuration. Writ- ed. In this case the DDR register is enough to se-
ing the DR register is always taken into account lect the I/O pin configuration.
even if the pin is configured as an input; this allows The OR register allows to distinguish: in input
to always have the expected level on the pin when mode if the pull-up with interrupt capability or the
toggling to output mode. Reading the DR register basic pull-up configuration is selected, in output
returns either the DR register latch content (pin mode if the push-pull or open drain configuration is
configured as output) or the digital value applied to selected.
the I/O pin (pin configured as input).
Each bit is set and cleared by software.
Input mode:
DATA DIRECTION REGISTER (DDR) 0: floating input
Port x Data Direction Register 1: pull-up input with or without interrupt
PxDDR with x = A, B, C, D, E or F.
Output mode:
Read/Write 0: output open drain (with P-Buffer unactivated)
Reset Value: 0000 0000 (00h) 1: output push-pull
7 0
45/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
Reset Value
0 0 0 0 0 0 0 0
of all IO port registers
0000h PADR
0001h PADDR MSB LSB
0002h PAOR 1)
0004h PCDR
0005h PCDDR MSB LSB
0006h PCOR
0008h PBDR
0009h PBDDR MSB LSB
1)
000Ah PBOR
000Ch PEDR
46/125
ST72334J/N, ST72314J/N, ST72124J
The external interrupt sensitivity is controlled by ■ A beep signal output on PF1 (with 3 selectable
the ISxx bits of the MISCR1 miscellaneous regis- audio frequencies)
ter. This control allows to have two fully independ- ■ SPI pin configuration:
ent external interrupt source sensitivities. – SS pin internal control to use the PC7 I/O port
Each external interrupt source can be generated function while the SPI is active.
on four different events on the pin: These functions are described in detail in the Sec-
■ Falling edge tion 6.2.3 Miscellaneous Registers Description.
■ Rising edge
47/125
ST72334J/N, ST72314J/N, ST72124J
48/125
ST72334J/N, ST72314J/N, ST72124J
7 0
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
49/125
ST72334J/N, ST72314J/N, ST72124J
RESET
WDGA T6 T5 T4 T3 T2 T1 T0
7-BIT DOWNCOUNTER
50/125
ST72334J/N, ST72314J/N, ST72124J
Notes: Following a reset, the watchdog is disa- Bit 6:0 = T[6:0] 7-bit timer (MSB to LSB).
bled. Once activated it cannot be disabled, except These bits contain the decremented value. A reset
by a reset. is produced when it rolls over from 40h to 3Fh (T6
becomes cleared).
The T6 bit can be used to generate a software re-
set (the WDGA bit is set and the T6 bit is cleared).
If the watchdog is activated, the HALT instruction STATUS REGISTER (SR)
will generate a Reset. Read/Write
Reset Value*: 0000 0000 (00h)
6.3.4 Hardware Watchdog Option 7 0
If Hardware Watchdog Is selected by option byte,
the watchdog is always active and the WDGA bit in - - - - - - - WDOGF
the CR is not used.
Refer to the device-specific Option Byte descrip- Bit 0 = WDOGF Watchdog flag.
tion. This bit is set by a watchdog reset and cleared by
software or a power on/off reset. This bit is useful
6.3.5 Low Power Modes for distinguishing power/on off or external reset
and watchdog reset.
Mode Description 0: No Watchdog reset occurred
WAIT No effect on Watchdog. 1: Watchdog reset occurred
Immediate reset generation as soon as
the HALT instruction is executed if the
HALT * Only by software and power on/off reset
Watchdog is activated (WDGA bit is
set). Note: This register is not used in versions without
LVD Reset.
6.3.6 Interrupts
None.
51/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
WDGCR WDGA T6 T5 T4 T3 T2 T1 T0
002Ah
Reset Value 0 1 1 1 1 1 1 1
52/125
ST72334J/N, ST72314J/N, ST72124J
53/125
ST72334J/N, ST72314J/N, ST72124J
fCPU
MCU-PERIPHERAL INTERFACE
8 high 8 low
8-bit 8 8 8 8 8 8 8 8
buffer
high
high
high
high
low
low
low
low
EXEDG
16
16
CC1 CC0
TIMER INTERNAL BUS
16 16
OVERFLOW
EXTCLK OUTPUT COMPARE EDGE DETECT ICAP1
DETECT
CIRCUIT CIRCUIT1
CIRCUIT
LATCH1 OCMP1
ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1 OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG
CR1 CR2
TIMER INTERRUPT
54/125
ST72334J/N, ST72314J/N, ST72124J
55/125
ST72334J/N, ST72314J/N, ST72124J
CPU CLOCK
INTERNAL RESET
TIMER CLOCK
CPU CLOCK
INTERNAL RESET
TIMER CLOCK
CPU CLOCK
INTERNAL RESET
TIMER CLOCK
56/125
ST72334J/N, ST72314J/N, ST72124J
57/125
ST72334J/N, ST72314J/N, ST72124J
TIMER CLOCK
ICAPi PIN
ICAPi FLAG
58/125
ST72334J/N, ST72314J/N, ST72124J
59/125
ST72334J/N, ST72314J/N, ST72124J
TIMER CLOCK
TIMER CLOCK
60/125
ST72334J/N, ST72314J/N, ST72124J
61/125
ST72334J/N, ST72314J/N, ST72124J
COUNTER
.... FFFC FFFD FFFE 2ED0 2ED1 2ED2 FFFC FFFD
2ED3
ICAP1
OCMP1
OLVL2 OLVL1 OLVL2
compare2 compare1 compare2
62/125
ST72334J/N, ST72314J/N, ST72124J
63/125
ST72334J/N, ST72314J/N, ST72124J
6.4.5 Interrupts
Enable Exit Exit
Event
Interrupt Event Control from from
Flag
Bit Wait Halt
Input Capture 1 event/Counter reset in PWM mode ICF1 Yes No
ICIE
Input Capture 2 event ICF2 Yes No
Output Compare 1 event (not available in PWM mode) OCF1 Yes No
OCIE
Output Compare 2 event (not available in PWM mode) OCF2 Yes No
Timer Overflow event TOF TOIE Yes No
Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chap-
ter). These events generate an interrupt if the corresponding Enable Control Bit is set and the I-bit in the
CC register is reset (RIM instruction).
64/125
ST72334J/N, ST72314J/N, ST72124J
65/125
ST72334J/N, ST72314J/N, ST72124J
66/125
ST72334J/N, ST72314J/N, ST72124J
67/125
ST72334J/N, ST72314J/N, ST72124J
MSB LSB
68/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
Timer A: 32 CR1 ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1
Timer B: 42 Reset Value 0 0 0 0 0 0 0 0
Timer A: 31 CR2 OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG
Timer B: 41 Reset Value 0 0 0 0 0 0 0 0
Timer A: 33 SR ICF1 OCF1 TOF ICF2 OCF2 - - -
Timer B: 43 Reset Value 0 0 0 0 0 0 0 0
Timer A: 34 ICHR1 MSB LSB
- - - - - -
Timer B: 44 Reset Value - -
69/125
ST72334J/N, ST72314J/N, ST72124J
MASTER SLAVE
MOSI MOSI
SPI
SCK SCK
CLOCK
GENERATOR
SS +5V SS
70/125
ST72334J/N, ST72314J/N, ST72124J
Internal Bus
Read
DR
Read Buffer IT
request
MOSI
SR
MISO 8-Bit Shift Register
SPIF WCOL - MODF - - - -
Write
SPI
STATE
SCK
CONTROL
SS
CR
MASTER
CONTROL
SERIAL
CLOCK
GENERATOR
71/125
ST72334J/N, ST72314J/N, ST72124J
72/125
ST72334J/N, ST72314J/N, ST72124J
73/125
ST72334J/N, ST72314J/N, ST72124J
Master SS
Slave SS
(CPHA=0)
Slave SS
(CPHA=1)
VR02131A
74/125
ST72334J/N, ST72314J/N, ST72124J
CPHA =1
CPOL = 1
CPOL = 0
SS
(to slave)
CAPTURE STROBE
CPHA =0
CPOL = 1
CPOL = 0
SS
(to slave)
CAPTURE STROBE
Note: This figure should not be used as a replacement for parametric information.
Refer to the Electrical Characteristics chapter. VR02131B
75/125
ST72334J/N, ST72314J/N, ST72124J
Figure 50. Clearing the WCOL bit (Write Collision Flag) Software Sequence
Read SR Read SR
1st Step
OR
THEN
THEN SPIF =0
2nd Step Read DR SPIF =0 Write DR WCOL=0 if no transfer has started
WCOL=0 WCOL=1 if a transfer has started
before the 2nd step
Read SR
1st Step
THEN
Note: Writing in DR register in-
2nd Step Read DR WCOL=0 stead of reading in it do not reset
WCOL bit
76/125
ST72334J/N, ST72314J/N, ST72124J
Clearing the MODF bit is done through a software 6.5.4.6 Overrun Condition
sequence:
An overrun condition occurs, when the master de-
1. A read or write access to the SR register while vice has sent several data bytes and the slave de-
the MODF bit is set. vice has not cleared the SPIF bit issuing from the
2. A write to the CR register. previous data byte transmitted.
In this case, the receiver buffer contains the byte
Notes: To avoid any multiple slave conflicts in the sent after the SPIF bit was last cleared. A read to
case of a system comprising several MCUs, the the DR register returns this byte. All other bytes
SS pin must be pulled high during the clearing se- are lost.
quence of the MODF bit. The SPE and MSTR bits This condition is not detected by the SPI peripher-
al.
77/125
ST72334J/N, ST72314J/N, ST72124J
SS SS SS SS
SCK SCK SCK SCK
Slave Slave Slave Slave
MCU MCU MCU MCU
MOSI MISO
SCK
Ports
Master
MCU
5V SS
78/125
ST72334J/N, ST72314J/N, ST72124J
6.5.6 Interrupts
79/125
ST72334J/N, ST72314J/N, ST72124J
80/125
ST72334J/N, ST72314J/N, ST72124J
Bit 7 = SPIF Serial Peripheral data transfer flag. The DR register is used to transmit and receive
This bit is set by hardware when a transfer has data on the serial bus. In the master device only a
been completed. An interrupt is generated if write to this register will initiate transmission/re-
SPIE=1 in the CR register. It is cleared by a soft- ception of another byte.
ware sequence (an access to the SR register fol- Notes: During the last clock cycle the SPIF bit is
lowed by a read or write to the DR register). set, a copy of the received data byte in the shift
0: Data transfer is in progress or has been ap- register is moved to a buffer. When the user reads
proved by a clearing sequence. the serial peripheral data I/O register, the buffer is
1: Data transfer between the device and an exter- actually being read.
nal device has been completed.
Warning:
Note: While the SPIF bit is set, all writes to the DR
register are inhibited. A write to the DR register places data directly into
the shift register for transmission.
A write to the the DR register returns the value lo-
Bit 6 = WCOL Write Collision status. cated in the buffer and not the contents of the shift
This bit is set by hardware when a write to the DR register (See Figure 47 ).
register is done during a transmit sequence. It is
cleared by a software sequence (see Figure 50).
0: No write collision occurred
1: A write collision has been detected
Bit 5 = Unused.
81/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
82/125
ST72334J/N, ST72314J/N, ST72124J
83/125
ST72334J/N, ST72314J/N, ST72124J
TDO
RDI
CR1
R8 T8 - M WAKE - - -
WAKE
TRANSMIT UP RECEIVE R RECEIVER
CONTROL UNIT CONTROL CLOCK
CR2 SR
TIE TCIE RIE ILIE TE RE RWU SBK TDRE TC RDRF IDLE OR NF FE -
SCI
INTERRUPT
CONTROL
TRANSMIT TER
CLOCK
RECEIVER RATE
CONTROL
84/125
ST72334J/N, ST72314J/N, ST72124J
Start
Idle Frame Bit
Start
Idle Frame Bit
85/125
ST72334J/N, ST72314J/N, ST72124J
86/125
ST72334J/N, ST72314J/N, ST72124J
87/125
ST72334J/N, ST72314J/N, ST72124J
ETPR
EXTE NDED TRANS MITTER PRESCALE R REGISTER
ERPR
EXTE NDED RECEIVER PRESCALER REGISTER
EXTENDED PRESCALER
RECEIVER
CLOCK
RECEIVER RATE
CONTROL
88/125
ST72334J/N, ST72314J/N, ST72124J
89/125
ST72334J/N, ST72314J/N, ST72124J
6.6.6 Interrupts
Enable Exit Exit
Event
Interrupt Event Control from from
Flag
Bit Wait Halt
Transmit Data Register Empty TDRE TIE Yes No
Transmission Complete TC TCIE Yes No
Received Data Ready to be Read RDRF Yes No
RIE
Overrrun Error Detected OR Yes No
Idle Line Detected IDLE ILIE Yes No
The SCI interrupt events are connected to the These events generate an interrupt if the corre-
same interrupt vector (see Interrupts chapter). sponding Enable Control Bit is set and the I-bit in
the CC register is reset (RIM instruction).
90/125
ST72334J/N, ST72314J/N, ST72124J
91/125
ST72334J/N, ST72314J/N, ST72124J
92/125
ST72334J/N, ST72314J/N, ST72124J
93/125
ST72334J/N, ST72314J/N, ST72124J
Bit 7:1 = ERPR[7:0] 8-bit Extended Receive Pres- Bit 7:1 = ETPR[7:0] 8-bit Extended Transmit Pres-
caler Register. caler Register.
The extended Baud Rate Generator is activated The extended Baud Rate Generator is activated
when a value different from 00h is stored in this when a value different from 00h is stored in this
register. Therefore the clock frequency issued register. Therefore the clock frequency issued
from the 16 divider (see Figure 54) is divided by from the 16 divider (see Figure 54) is divided by
the binary factor set in the ERPR register (in the the binary factor set in the ETPR register (in the
range 1 to 255). range 1 to 255).
The extended baud rate generator is not used af- The extended baud rate generator is not used af-
ter a reset. ter a reset.
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
94/125
ST72334J/N, ST72314J/N, ST72124J
fCPU fADC
DIV 2
AIN0
HOLD CONTROL
AIN1 RADC
ANALOG ANALOG TO DIGITAL
MUX CONVERTER
AINx
CSAMPLE
ADCDR D7 D6 D5 D4 D3 D2 D1 D0
95/125
ST72334J/N, ST72314J/N, ST72124J
■ A/D conversion
[duration: tCONV] HOLD
During this phase, the A/D conversion is CONTROL
computed (8 successive approximations cycles)
and the CSAMPLE sample capacitor is
disconnected from the analog input pin to get COCO BIT SET
tLOAD
the optimum A/D conversion accuracy.
While the ADC is on, these two phases are contin- 6.7.4 Low Power Modes
uously repeated. Note: The A/D converter may be disabled by re-
At the end of each conversion, the sample capaci- setting the ADON bit. This feature allows reduced
tor is kept loaded with the previous measurement power consumption when no conversion is need-
load. The advantage of this behaviour is that it ed and between single shot conversions..
minimizes the current consumption on the analog Mode Description
pin in case of single input channel measurement.
WAIT No effect on A/D Converter
6.7.3.4 Software Procedure
A/D Converter disabled.
Refer to the control/status register (CSR) and data
After wakeup from Halt mode, the A/D
register (DR) in Section 6.7.6 for the bit definitions
and to Figure 57 for the timings. HALT Converter requires a stabilisation time
before accurate conversions can be
ADC Configuration performed.
The total duration of the A/D conversion is 12 ADC
clock periods (1/fADC=2/fCPU). 6.7.5 Interrupts
None
96/125
ST72334J/N, ST72314J/N, ST72124J
7 0 7 0
97/125
ST72334J/N, ST72314J/N, ST72124J
Address Register
7 6 5 4 3 2 1 0
(Hex.) Label
ADCDR D7 D6 D5 D4 D3 D2 D1 D0
0070h
Reset Value 0 0 0 0 0 0 0 0
ADCCSR COCO ADON CH3 CH2 CH1 CH0
0071h
Reset Value 0 0 0 0 0 0 0 0
98/125
ST72334J/N, ST72314J/N, ST72124J
7 INSTRUCTION SET
7.1 ST7 ADDRESSING MODES so, most of the addressing modes may be subdi-
vided in two sub-modes called long and short:
The ST7 Core features 17 different addressing
modes which can be classified in 7 main groups: – Long addressing mode is more powerful be-
cause it can use the full 64 Kbyte address space,
Addressing Mode Example however it uses more bytes and more CPU cy-
Inherent nop cles.
Immediate ld A,#$55 – Short addressing mode is less powerful because
it can generally only access page zero (0000h -
Direct ld A,$55 00FFh range), but the instruction size is more
Indexed ld A,($55,X) compact, and faster. All memory to memory in-
Indirect ld A,([$55],X) structions use short addressing modes only
(CLR, CPL, NEG, BSET, BRES, BTJT, BTJF,
Relative jrne loop INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)
Bit operation bset byte,#5 The ST7 Assembler optimizes the use of long and
short addressing modes.
The ST7 Instruction set is designed to minimize
the number of bytes required per instruction: To do
Table 20. ST7 Addressing Mode Overview
Pointer Pointer
Destination/ Length
Mode Syntax Address Size
Source (Bytes)
(Hex.) (Hex.)
Inherent nop +0
Immediate ld A,#$55 +1
Short Direct ld A,$10 00..FF +1
Long Direct ld A,$1000 0000..FFFF +2
+ 0 (with X register)
No Offset Direct Indexed ld A,(X) 00..FF
+ 1 (with Y register)
Short Direct Indexed ld A,($10,X) 00..1FE +1
Long Direct Indexed ld A,($1000,X) 0000..FFFF +2
Short Indirect ld A,[$10] 00..FF 00..FF byte +2
Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word +2
Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte +2
Long Indirect Indexed ld A,([$10.w],X) 0000..FFFF 00..FF word +2
Relative Direct jrne loop PC-128/PC+127 1) +1
Relative Indirect jrne [$10] PC-128/PC+127 1) 00..FF byte +2
Bit Direct bset $10,#7 00..FF +1
Bit Indirect bset [$10],#7 00..FF 00..FF byte +2
Bit Direct Relative btjt $10,#7,skip 00..FF +2
Bit Indirect Relative btjt [$10],#7,skip 00..FF 00..FF byte +3
Note 1. At the time the instruction is executed, the Program Counter (PC) points to the instruction follow-
ing JRxx.
99/125
ST72334J/N, ST72314J/N, ST72124J
100/125
ST72334J/N, ST72314J/N, ST72124J
101/125
ST72334J/N, ST72314J/N, ST72124J
Using a pre-byte
The instructions are described with one to four These prebytes enable instruction in Y as well as
bytes. indirect addressing modes to be implemented.
In order to extend the number of available op- They precede the opcode of the instruction in X or
codes for an 8-bit CPU (256 opcodes), three differ- the instruction using direct addressing mode. The
ent prebyte opcodes are defined. These prebytes prebytes are:
modify the meaning of the instruction they pre- PDY 90 Replace an X based instruction
cede. using immediate, direct, indexed, or inherent ad-
The whole instruction becomes: dressing mode by a Y one.
PC-2 End of previous instruction PIX 92 Replace an instruction using di-
rect, direct bit, or direct relative addressing mode
PC-1 Prebyte to an instruction using the corresponding indirect
PC opcode addressing mode.
It also changes an instruction using X indexed ad-
PC+1 Additional word (0 to 2) according
dressing mode to an instruction using indirect X in-
to the number of bytes required to compute the ef-
dexed addressing mode.
fective address
PIY 91 Replace an instruction using X in-
direct indexed addressing mode by a Y one.
102/125
ST72334J/N, ST72314J/N, ST72124J
103/125
ST72334J/N, ST72314J/N, ST72124J
NOP No Operation
OR OR operation A=A+M A M N Z
pop CC CC M H I N Z C
104/125
ST72334J/N, ST72314J/N, ST72124J
8 ELECTRICAL CHARACTERISTICS
Note:
Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress
rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating con-
ditions for extended periods may affect device reliability.
General Warning:
Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional internal reset is
generated or the program counter is corrupted (by an expected change to the I/O configuration). To guarantee safe op-
eration, this connection has to be done through a pull-up or pull-down resistor (10KΩ typical).
Thermal Characteristics
Symbol Ratings Value Unit
Package thermal resistance TQFP64 60
SDIP56 TBD
RthJA °C/W
TQFP44 TBD
SDIP42 TBD
T Jmax Max. junction temperature 150 °C
TSTG Storage temperature range -65 to +150 °C
PD Power dissipation 500 mW
105/125
ST72334J/N, ST72314J/N, ST72124J
Figure 58. fOSC Maximum Operating Frequency Versus VDD Supply Voltage 3)
FUNCTIONALI TY NOT GUARAN TEED IN THIS AREA FUNCTIONA LITY GUARANTEED IN THIS AREA
16
1
0 SUPPLY VOLTAGE [V]
2.5 3 3.5 4 4.5 5 5.5
Notes:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
2) A/D operation and resonator oscillator start-up are not guaranteed below 1MHz.
3) Operating conditions TA=-40 to +85°C. The shaded area is outside the recommended operating range; device func-
tionality is not guaranteed under these conditions.
106/125
ST72334J/N, ST72314J/N, ST72124J
Notes:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
2) CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS, all peripherals switched
off; clock input (OSC1) driven by external square wave.
3) All I/O pins in input mode with a static value at VDD or VSS, all peripherals switched off; clock input (OSC1) driven by
external square wave.
4) All I/O pins in input mode with a static value at VDD or VSS, LVD disabled.
5) Data based on characterization results, not tested in production.
6) ∆tINST is the number of tCPU to finish the current instruction execution.
107/125
ST72334J/N, ST72314J/N, ST72124J
Notes:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
2) Data based on design simulation and/or technology characteristics, not tested in production.
3) Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4) Data based on characterization results, not tested in production.
5) Positive injection (IINJ+)
The IINJ+ is performed through protection diodes insulated from the substrate of the die.
The true open-drain pins do not accept positive injection. In this case the maximum voltage rating must be respected.
6) ADC accuracy reduced by negative injection (IINJ- )
The IINJ- is performed through protection diodes NOT INSULATED from the substrate of the die. The drawback is a small
leakage (a few µA) induced inside the die when a negative injection is performed. This leakage is tolerated by the digital
structure, but it acts on the analog line depending on the impedance versus a leakage current of a few µA (if the MCU
has an AD converter). The effect depends on the pin which is submitted to the injection. Of course, external digital signals
applied to the component must have a maximum impedance close to 50KΩ.
Location of the negative current injection:
- Pins with analog input capability are the most sensitive. IINJ- maximum is 0.8 mA (assuming that the impedance of the
analog voltage is lower than 25KΩ)
- Pure digital pins can tolerate 1.6mA. In addition, the best choice is to inject the current as far as possible from the analog
input pins.
7) When several inputs are submitted to a current injection, the maximum IINJ is the sum of the positive (or negative) cur-
rents (instantaneous values). These results are based on characterisation with IINJ maximum current injection on four I/
O port pins of the device.
8) To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external
interrupt source.
108/125
ST72334J/N, ST72314J/N, ST72124J
Notes:
1) LVD typical data are based on TA=25°C. They are given only as design guidelines and are not tested.
2) The VLVDhyst hysteresis is constant.
3) Data based on characterization results, not tested in production.
4) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
109/125
ST72334J/N, ST72314J/N, ST72124J
tSTART Oscillator start-up time Depends on resonator quality. A typical value is 10ms
EXTERNAL RC OSCILLATO R
INTERNAL RC OSCILLATOR
Notes:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
2) These data are based on typical RSmax. The oscillator selection can be optimized in terms of supply current with high
quality resonator.
3) RSmax is the equivalent serial resistance of the crystal or ceramic resonator.
4) Data based on design simulation and/or technology characteristics, not tested in production.
5) Data based on characterization results, not tested in production.
6) In this condition, the capacitor to be considered is the global parasitic capacitor. In this case, the RC oscillator frequen-
cy tuning has to be done by trying out several resistor values.
110/125
ST72334J/N, ST72314J/N, ST72124J
Data-EEPROM
Symbol Parameter Conditi ons Min Typ Max Unit
tPROG Programming time 25 ms
tRET Data retention 10 Years
NRW Write erase cycles 100 000 Cycles
WATCHDOG
Symbol Parameter Conditions Min Typ Max Unit
12,288 786,432 tCPU
tDOG Watchdog time-out
fCPU = 8MHz 1.54 98.3 ms
Note:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
111/125
ST72334J/N, ST72314J/N, ST72124J
Notes:
1) Data based on characterization results, not tested in production.
2) Measurement points are VOL, VOH, VIL and VIH in the SPI timing diagram.
112/125
ST72334J/N, ST72314J/N, ST72124J
SS
(INPUT) 1
12 13
SCK
(OUTPUT) 5 4
MISO D7-IN D6-IN
(INPUT) D0-IN
6 7
MOSI
D7-OUT D6-OUT D0-OUT
(OUTPUT)
10 11
VR000108
Note:
1) Measurement points are VOL, VOH, VIL and VIH in the SPI timing diagram.
113/125
ST72334J/N, ST72314J/N, ST72124J
Measurement points are VOL, VOH, VIL and VIH in the SPI Timing Diagram
Note:
1) Measurement points are VOL, VOH, VIL and VIH in the SPI timing diagram.
114/125
ST72334J/N, ST72314J/N, ST72124J
Note:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
115/125
ST72334J/N, ST72314J/N, ST72124J
Notes:
1) Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guide-
lines and are not tested.
2) Data based on characterization results, not tested in production.
3) Tested in production at TA=25°C, characterized over the whole temperature range.
4) ADC Accuracy vs. Negative Injection Current:
For IINJ-=0.8mA, the typical leakage induced inside the die is 1.6µA and the effect on the ADC accuracy is a loss of 1 LSB
for each 10KΩ increase of the external analog source impedance. This effect on the ADC accuracy has been observed
under worst-case conditions for injection:
- negative injection
- injection to an Input with analog capability, adjacent to the enabled Analog Input
- at 5V VDD supply, and worst case temperature.
(2)
TUE=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
7 TUE (3) OE=Offset Error: deviation between the first actual
(1) transition and the first ideal one.
6
GE=Gain Error: deviation between the last ideal
5 transition and the last actual one.
OE ILE DLE=Differential Linearity Error: maximum devia-
4 tion between actual steps and the ideal one.
3 ILE=Integral Linearity Error: maximum deviation
DLE between any actual transition and the end point
2 correlation line.
1 LSB (ideal)
1
Vin (LSBideal)
0
1 2 3 4 5 6 7 253 254 255 256
VSSA VDDA
116/125
ST72334J/N, ST72314J/N, ST72124J
9 GENERAL INFORMATION
9.1 PACKAGES
9.1.1 Package Mechanical Data
Figure 67. 64-Pin Thin Quad Flat Package
mm inches
Dim
Min Typ Max Min Typ Max
A 1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.055 0.057
B 0.30 0.37 0.45 0.012 0.015 0.018
C 0.09 0.20 0.004 0.008
D 16.00 0.630
D1 14.00 0.551
D3 12.00 0.472
E 16.00 0.630
E1 14.00 0.551
E3 12.00 0.472
e 0.80 0.031
K 0° 3.5° 7°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 L1 1.00 0.039
L
Number of Pins
N 64 ND 16 NE 16
K
Figure 68. 56-Pin Shrink Plastic Dual In-Line Package, 600-mil Width
mm inches
Dim.
Min Typ Max Min Typ Max
A 6.35 0.250
A1 0.38 0.015
A2 3.18 4.95 0.125 0.195
b 0.41 0.016
b2 0.89 0.035
C 0.20 0.38 0.008 0.015
D 50.29 53.21 1.980 2.095
E 15.01 0.591
E1 12.32 14.73 0.485 0.580
e 1.78 0.070
eA 15.24 0.600
eB 17.78 0.700
L 2.92 5.08 0.115 0.200
PDIP56S Number of Pins
N 56
117/125
ST72334J/N, ST72314J/N, ST72124J
PACKAGES (Cont’d)
Figure 69. 44-Pin Thin Quad Flat Package
mm inches
Dim
Min Typ Max Min Typ Max
A 1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.055 0.057
b 0.30 0.37 0.45 0.012 0.015 0.018
c 0.09 0.20 0.004 0.008
b
D 12.00 0.472
D1 10.00 0.394
D3 8.00 0.315
E 12.00 0.472
E1 10.00 0.394
c E3 8.00 0.315
e 0.80 0.031
K 0° 3.5° 7°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 L1 1.00 0.039
L
Number of Pins
N 44
K
Figure 70. 42-Pin Shrink Plastic Dual In-Line Package, 600-mil Width
mm inches
Dim.
Min Typ Max Min Typ Max
A 5.08 0.200
A1 0.51 0.020
A2 3.05 3.81 4.57 0.120 0.150 0.180
b 0.46 0.56 0.018 0.022
b2 1.02 1.14 0.040 0.045
C 0.23 0.25 0.38 0.009 0.010 0.015
D 36.58 36.83 37.08 1.440 1.450 1.460
E 15.24 16.00 0.600 0.630
E1 12.70 13.72 14.48 0.500 0.540 0.570
e 1.78 0.070
eA 15.24 0.600
eB 18.54 0.730
eC 0.00 1.52 0.000 0.060
PDIP42S L 2.54 3.30 3.56 0.100 0.130 0.140
Number of Pins
N 42
118/125
ST72334J/N, ST72314J/N, ST72124J
PACKAGES (Cont’d)
9.1.2 User-supplied TQFP64 Adaptor / Socket ■ Direct TQFP64 soldering
To solder the TQFP64 device directly on the appli- ■ YAMAICHI IC149-064-008-S5* socket
cation board, or to solder a socket for connecting soldering to plug either the emulator probe or an
the emulator probe, the application board should adaptor board with an TQFP64 clamshell
provide the footprint described in Figure 71. This socket.
footprint allows both configurations: * Not compatible with TQFP64 package.
SK
mm inches
E Dim
E1 Min Typ Max Min Typ Max
E3 B 0.35 0.45 0.50 0.014 0.018 0.020
E 20.80 0.819
e E1 14.00 0.551
SOCKET
SK* 26 1.023
DETAIL
Number of Pins
N 64 (4x16)
119/125
ST72334J/N, ST72314J/N, ST72124J
PACKAGES (Cont’d)
9.1.3 User-supplied TQFP44 Adaptor / Socket ■ Direct TQFP44 soldering
To solder the TQFP44 device directly on the appli- ■ YAMAICHI IC149-044-*52-S5 socket soldering
cation board, or to solder a socket for connecting to plug either the emulator probe or an adaptor
the emulator probe, the application board should board with an TQFP44 clamshell socket.
provide the footprint described in Figure 72. This
footprint allows both configurations:
Figure 72. TQFP44 Device And Emulator Probe Compatible Footprint
SK
mm inches
E Dim
E1 Min Typ Max Min Typ Max
E3 B 0.35 0.45 0.50 0.014 0.018 0.020
E 13.40 0.527
e E1 10.00 0.394
SOCKET
SK* 24.2 0.953
DETAIL
Number of Pins
N 44 (4x11)
120/125
ST72334J/N, ST72314J/N, ST72124J
121/125
ST72334J/N, ST72314J/N, ST72124J
TEMP.
DEVICE PACKAGE RANGE / XXX
Code name (defined by STMicroelectronics)
1= standard 0 to +70 °C
6= industrial -40 to +85 °C
7= automotive -40 to +125 °C
3= automotive -40 to +125 °C
B = Plastic DIP
T = Plastic TQFP
TEMP.
DEVICE PACKAGE RANGE XXX
Code name (defined by STMicroelectronics)
1= standard 0 to +70 °C
6= industrial -40 to +85 °C
7= automotive -40 to +125 °C
3= automotive -40 to +125 °C
B = Plastic DIP
T = Plastic TQFP
122/125
ST72334J/N, ST72314J/N, ST72124J
STMicroelectronics references
Device: [ ] ST72334J2 [ ] ST72314J2 [ ] ST72124J2
[ ] ST72334J4 [ ] ST72314J4
[ ] ST72334N2 [ ] ST72314N2
[ ] ST72334N4 [ ] ST72314N4
Comments : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Operating Range in the application: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes . . ... ... . .. .. . .. .. .. . .. ... . .. .... . ... .. .. .. .. . .. .. .. . .. ... . .. ....
Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Date . . ... ... . .. .. . .. .. .. . .. ... . .. .... . ... .. .. .. .. . .. .. .. . .. ... . .. ....
123/125
ST72334J/N, ST72314J/N, ST72124J
10 SUMMARY OF CHANGES
Description of the changes between the current release of the specification and the previous one.
Revision Main changes Date
New chapter to compare ST72334 versus ST72331 (section 2.1 on page 6)
Correction of the address of the CRSR register to 2Bh instead of 25h (Table 4 page 33)
Correction of port A pin name column in Table 9 page 44 (PA2:0 instead of PA3:0)
Correction of MISCR2 register description (section 6.2.3 on page 48)
Correction of the FLASH and data EEPROM programming time (section 8.7 on page 111)
1.0 Sept-99
Correction of the TQFP44 socket proposal (Table 23 page 120)
More information on the FMP option bit (section 9.2.1 on page 121)
Added .S19 format in transfer of Code (section 9.2.2 on page 122)
Correction of the microcontroller option list (section 9.2.2 on page 122)
History page added (section 10 on page 124)
124/125
ST72334J/N, ST72314J/N, ST72124J
Notes:
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1999 STMicroelectronics - All Rights Reserved.
Purchase of I2 C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain
Sweden - Switzerland - United Kingdom - U.S.A.
http:// www.st.com
125/125