Ch. 2.
Inverse Trigonometric Functions
   1. The domain and range of the trigonometric functions are as follows:
               FUNCTION                      DOMAIN                    RANGE
                 y  sin x                        R                       1,1
                 y  cos x                        R                       1,1
                 y  tan x                R  n : n  I                    R
                                                                    R   1,1
                y  cos ecx               R  n : n  I               or
                                                                     ,1  1,  
                                                                    R   1,1
                 y  sec x                                  
                                       R   2n  1 : n  I           or
                                                    2              ,1  1,  
                 y  cot x                                  
                                       R   2n  1 : n  I                R
                                                    2        
   2. The domain and range of the inverse trigonometric functions are as follows:
                                     DOMAIN            RANGE
   3. Graphs of Inverse Trigonometric Functions (Principal Branch)
===============================================================================================
Biju Thomas                         mathshelp4u.weebly.com                       XII/Mathematics
                   IMPORTANT FORMULAE FOR INVERSE TRIGONOMETRIC FUNCTIONS
                                                                                𝝅 𝝅
     4. 𝒔𝒊𝒏−𝟏 (𝒔𝒊𝒏𝒙) = 𝒙,                                  𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [− 𝟐 , 𝟐 ]
     5. 𝒄𝒐𝒔−𝟏 (𝒄𝒐𝒔𝒙) = 𝒙,                                 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [𝟎, 𝝅 ]
                −𝟏 (𝒕𝒂𝒏𝒙)                                                      𝝅 𝝅
     6. 𝒕𝒂𝒏                   = 𝒙,                       𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− 𝟐 , 𝟐 )
                                                                              𝝅 𝝅
     7. 𝒄𝒐𝒔𝒆𝒄−𝟏 (𝒄𝒐𝒔𝒆𝒄𝒙) = 𝒙,                            𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [− 𝟐 , 𝟐 ] , 𝒙 ≠ 𝟎
                                                                                           𝝅
     8. 𝒔𝒆𝒄−𝟏 (𝒔𝒆𝒄𝒙) = 𝒙,                               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [𝟎, 𝝅 ], 𝒙 ≠           𝟐
     9. 𝒄𝒐𝒕−𝟏 (𝒄𝒐𝒕𝒙) = 𝒙,                               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (𝟎, 𝝅)
---------------------------------------------------------------------------------------------------------------------------------------------
     10. 𝒔𝒊𝒏(𝒔𝒊𝒏−𝟏 𝒙) = 𝒙,                              𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏 ]
                       −𝟏
     11. 𝒄𝒐𝒔(𝒄𝒐𝒔 𝒙) = 𝒙,                               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏 ]
                       −𝟏
     12. 𝒕𝒂𝒏(𝒕𝒂𝒏 𝒙) = 𝒙,                               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
                             −𝟏
     13. 𝒄𝒐𝒔𝒆𝒄(𝒄𝒐𝒔𝒆𝒄 𝒙) = 𝒙,                           𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
                      −𝟏
     14. 𝒔𝒆𝒄(𝒔𝒆𝒄 𝒙) = 𝒙,                               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
                      −𝟏
     15. 𝒄𝒐𝒕(𝒄𝒐𝒕 𝒙) = 𝒙,                              𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
-----------------------------------------------------------------------------------------------------------------------------------------------------------
     16. 𝒔𝒊𝒏−𝟏 (−𝒙) = − 𝒔𝒊𝒏−𝟏 𝒙,                      𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
     17. 𝒄𝒐𝒔−𝟏 (−𝒙) = 𝝅 − 𝒄𝒐𝒔−𝟏 𝒙,                   𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
     18. 𝒕𝒂𝒏−𝟏 (−𝒙) = − 𝒕𝒂𝒏−𝟏 𝒙,                     𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
     19. 𝒄𝒐𝒔𝒆𝒄−𝟏 (−𝒙) = − 𝒄𝒐𝒔𝒆𝒄−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
     20. 𝒔𝒆𝒄−𝟏 (−𝒙) = 𝝅 − 𝒔𝒆𝒄−𝟏 𝒙,                   𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
                −𝟏 (−𝒙)                   −𝟏
     21. 𝒄𝒐𝒕               = 𝝅 − 𝒄𝒐𝒕 𝒙,               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
-----------------------------------------------------------------------------------------------------------------------------------------------------------
===============================================================================================
Biju Thomas                         mathshelp4u.weebly.com                       XII/Mathematics
                     𝟏
     22. 𝒄𝒐𝒔−𝟏 (𝒙) = 𝒔𝒆𝒄−𝟏 𝒙,                        𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
                  𝟏
     23.   𝒔𝒊𝒏−𝟏 ( )      = 𝒄𝒐𝒔𝒆𝒄−𝟏 𝒙,               𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
                  𝒙
                     𝟏        𝒄𝒐𝒕−𝟏 𝒙 ,         𝒇𝒐𝒓 𝒙 > 𝟎
     24. 𝒕𝒂𝒏−𝟏 (𝒙) = {
                               − 𝜋 + 𝑐𝑜𝑡 −1 𝑥 , 𝑓𝑜𝑟 𝑥 < 0
                     𝟏        𝒕𝒂𝒏−𝟏 𝒙 ,              𝒇𝒐𝒓 𝒙 > 𝟎
     25. 𝒄𝒐𝒕−𝟏 (𝒙) = {
                               𝜋 + 𝑡𝑎𝑛−1 𝑥 ,         𝑓𝑜𝑟 𝑥 < 0
                          𝟏
     26. 𝒄𝒐𝒔𝒆𝒄−𝟏 ( ) = 𝒔𝒊𝒏−𝟏 𝒙,                      𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
                          𝒙
                     𝟏
     27. 𝒔𝒆𝒄−𝟏 (𝒙) = 𝒄𝒐𝒔−𝟏 𝒙,                        𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
-----------------------------------------------------------------------------------------------------------------------------------------------------------
                                         𝝅
     28. 𝒔𝒊𝒏−𝟏 𝒙 + 𝒄𝒐𝒔−𝟏 𝒙 =             𝟐
                                           ,         𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
                                         𝝅
     29. 𝒕𝒂𝒏−𝟏 𝒙 + 𝒄𝒐𝒕−𝟏 𝒙 =             𝟐
                                           ,         𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
               −𝟏                  −𝟏          𝝅
     30. 𝒔𝒆𝒄        𝒙 + 𝒄𝒐𝒔𝒆𝒄           𝒙=     𝟐
                                                 ,   𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
-----------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                  𝒙+𝒚
                                                       𝒕𝒂𝒏−𝟏 (𝟏 − 𝒙𝒚)                           , 𝒊𝒇 𝒙𝒚 < 𝟏
                                                           𝑥+𝑦
     31. 𝒕𝒂𝒏−𝟏 𝒙 + 𝒕𝒂𝒏−𝟏 𝒚 =                   𝜋 + 𝑡𝑎𝑛−1 (       ),                  𝑖𝑓 𝑥 > 0, 𝑦 > 0 𝑎𝑛𝑑 𝑥𝑦 > 1
                                                          1 − 𝑥𝑦
                                                              𝑥+𝑦
                                          {− 𝜋 +      𝑡𝑎𝑛−1 (       ),               𝑖𝑓 𝑥 < 0, 𝑦 < 0 𝑎𝑛𝑑 𝑥𝑦 > 1
                                                             1 − 𝑥𝑦
                                                                  𝒙−𝒚
                                                      𝒕𝒂𝒏−𝟏 (𝟏 + 𝒙𝒚)                           , 𝒊𝒇 𝒙𝒚 > −𝟏
                                                           𝑥−𝑦
     32. 𝒕𝒂𝒏−𝟏 𝒙 − 𝒕𝒂𝒏−𝟏 𝒚 =                   𝜋 + 𝑡𝑎𝑛−1 (       ),                𝑖𝑓 𝑥 > 0, 𝑦 < 0 𝑎𝑛𝑑 𝑥𝑦 < − 1
                                                          1 + 𝑥𝑦
                                                              𝑥−𝑦
                                         {− 𝜋 +       𝑡𝑎𝑛−1 (1 + 𝑥𝑦) ,              𝑖𝑓 𝑥 < 0, 𝑦 > 0 𝑎𝑛𝑑 𝑥𝑦 < − 1
                                                                   𝑥 + 𝑦 + 𝑧 − 𝑥𝑦𝑧
     33. 𝑡𝑎𝑛−1 𝑥 + 𝑡𝑎𝑛−1 𝑦 + 𝑡𝑎𝑛−1 𝑧 = 𝑡𝑎𝑛−1 (1 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥)
-----------------------------------------------------------------------------------------------------------------------------------------------------------
                                               𝒔𝒊𝒏−𝟏 [𝒙√𝟏 − 𝒚𝟐 + 𝒚√𝟏 − 𝒙𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙𝟐 + 𝒚𝟐 ≤ 𝟏
     34. 𝒔𝒊𝒏−𝟏 𝒙 + 𝒔𝒊𝒏−𝟏 𝒚 =                    𝜋 − 𝑠𝑖𝑛−1 [𝑥√1 − 𝑦 2 + 𝑦√1 − 𝑥 2 ] , 𝑖𝑓 0 ≤ 𝑥, 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 2 + 𝑦 2 > 1
                                                  −1       2         2                           2   2
                                        {− 𝜋 − 𝑠𝑖𝑛 [𝑥√1 − 𝑦 + 𝑦√1 − 𝑥 ] , 𝑖𝑓 − 1 ≤ 𝑥, 𝑦 ≤ 0 𝑎𝑛𝑑 𝑥 + 𝑦 > 1
     35. 𝒔𝒊𝒏−𝟏 𝒙 − 𝒔𝒊𝒏−𝟏 𝒚 =
                         𝒔𝒊𝒏−𝟏 [𝒙√𝟏 − 𝒚𝟐 − 𝒚√𝟏 − 𝒙𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙𝟐 + 𝒚𝟐 ≤ 𝟏
               𝜋 − 𝑠𝑖𝑛−1 [𝑥√1 − 𝑦 2 − 𝑦√1 − 𝑥 2 ] , 𝑖𝑓 0 < 𝑥 ≤ 1; −1 ≤ 𝑦 ≤ 0 𝑎𝑛𝑑 𝑥 2 + 𝑦 2 > 1
                     −1       2         2                                   2   2
           {− 𝜋 − 𝑠𝑖𝑛 [𝑥√1 − 𝑦 − 𝑦√1 − 𝑥 ] , 𝑖𝑓 − 1 ≤ 𝑥 < 0; 0 < 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 + 𝑦 > 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------
                                          𝒄𝒐𝒔−𝟏 [𝒙𝒚 − √𝟏 − 𝒙𝟐 √𝟏 − 𝒚𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙 + 𝒚 ≥ 𝟎
               −𝟏             −𝟏
     36. 𝒄𝒐𝒔        𝒙 + 𝒄𝒐𝒔        𝒚={
                                      2𝜋 − 𝑐𝑜𝑠 −1 [𝑥𝑦 − √1 − 𝑥 2 √1 − 𝑦 2 ], 𝑖𝑓 − 1 ≤ 𝑥, 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 + 𝑦 ≤ 0
===============================================================================================
Biju Thomas                         mathshelp4u.weebly.com                       XII/Mathematics
                                                         𝒄𝒐𝒔−𝟏 [𝒙𝒚 + √𝟏 − 𝒙𝟐 √𝟏 − 𝒚𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙 − 𝒚 ≤ 𝟎
                 −𝟏             −𝟏
     37. 𝒄𝒐𝒔          𝒙 − 𝒄𝒐𝒔        𝒚={
                                        −𝑐𝑜𝑠 −1 [𝑥𝑦 + √1 − 𝑥 2 √1 − 𝑦 2 ], 𝑖𝑓 − 1 ≤ 𝑦 ≤ 0; 0 < 𝑥 ≤ 1 𝑎𝑛𝑑 𝑥 − 𝑦 ≥ 0
-----------------------------------------------------------------------------------------------------------------------------------------------------------
     38.
                                                                                      1  x2                   
           sin   1
                       x   cos   1
                                             1 x   2
                                                                   x 
                                                                  1
                                                              tan 
                                                                    1 x 
                                                                         2
                                                                                  1
                                                                             cot 
                                                                                      x
                                                                                                                
                                                                                                                
                                                                                                                
                                                                                      1  x2                   
           cos   1
                       x   sin   1
                                             1 x   2
                                                                   x 
                                                                  1
                                                              cot 
                                                                    1 x 
                                                                         2
                                                                                  1
                                                                             tan 
                                                                                      x
                                                                                                                
                                                                                                                
                                                                                                                
-----------------------------------------------------------------------------------------------------------------------------------------------------------
     39.
                                                        
           2sin 1  x   sin 1 2 x 1  x 2  cos 1 1  2 x 2  , 
                                                                                                   1
                                                                                                   2
                                                                                                        x
                                                                                                                1
                                                                                                                    2
           2 cos 1  x   sin 1            2 x 1  x   cos
                                                              2        1
                                                                            2x   2
                                                                                       1 ,
                                                                                               1
                                                                                               2
                                                                                                        x 1
                                    2x                  
           2 tan 1  x   sin 1                      , x  1
                                   1 x                 
                                         2
                                      1  x2 
                             cos 1       2 
                                                , x0
                                     1 x 
                                      2x 
                             tan 1       2 
                                                , 1  x  1
                                     1 x 
-----------------------------------------------------------------------------------------------------------------------------------------------------------
     40.
           3sin 1  x   sin 1  3 x  4 x 3 
           3cox 1  x   cos 1  4 x 3  3 x 
                                    3x  x3 
           3 tan 1  x   tan 1        2 
                                    1  3x 
-----------------------------------------------------------------------------------------------------------------------------------------------------------
     41. List of substitutions:
            S. No.           Form                                                 substitution
               1                 √𝒙𝟐 − 𝒂𝟐                               x = acosecθ or x = asecθ
                  2                      √𝒙𝟐 + 𝒂𝟐                       x = atanθ                       or x = acotθ
                  3              √𝒂𝟐 − 𝒙𝟐                               x = acosθ                      or x = asinθ
                  4          √𝒂 − 𝒙 & √𝒂 + 𝒙                            x = acos2θ                      or x = acosθ
--------------------------------------------------------------------------------------------------------------------------
===============================================================================================
Biju Thomas                         mathshelp4u.weebly.com                       XII/Mathematics
                                                Trigonometric Formulae
I Sum and Difference of angle formulae:
       a)   Sin( x + y)   =       sinx cosy + cosx siny
       b)   Sin(x – y)    =       sinx cosy – cosx siny
       c)   Cos(x + y)    =       cosx cosy – sinx siny
       d)   Cos(x – y )   =       cosx cosy + sin x siny
                                   tan x  tan y
       e) tan(x + y)      =
                                  1  tan x tan y
                                   tan x  tan y
       f)   tan(x – y)    =
                                  1  tan x tan y
                                   cot x cot y  1
       g) cot (x + y) =
                                   cot y  cot x
                                   cot x cot y  1
       h) cot (x – y) =
                                   cot y  cot x
II Compound angle Formulae
                                                                   2 tan x
       a) sin 2x          =       2sinx cosx          =
                                                                 1  tan 2 x
                                                                                                 1  tan 2 x
       b) cos 2x          =       cos2 x  sin 2 x =             1 – 2sin2x =   2 cos2 x  1 =
                                                                                                 1  tan 2 x
                                    2 tan x
       c) tan 2x          =
                                  1  tan 2 x
       d) 1 – cos 2x =            2 sin2x
       e) 1 + Cos 2x =            2 cos2x
                                        x
       f)   1 – cos x     =       2 sin2 2
                                         x
       g) 1 + cos x       =       2 cos2 2
                                                         x
                                                 2 tan
                                 x   x                   2
       h) Sinx            = 2 sin cos 
                                 2   2                       x
                                               1  tan 2
                                                             2
                                                                                                            x
                                                                                                  1  tan 2
                                  x                2 x     2 x     2 x                              2
       i)   Cosx          = 2 cos2   1  1  2 sin    cos    sin   
                                  2                 2       2       2                     1  tan 2
                                                                                                            x
                                                                                                            2
       j) Sin 3x          =       3 sin x – 4sin3x
       k) Cos 3x          =       4cos3x – 3 cos x
                                  3 tan x  tan 3 x
       l)   tan 3x        =
                                    1  3 tan 2 x
===============================================================================================
Biju Thomas                         mathshelp4u.weebly.com                       XII/Mathematics
III    Transformation Formulae (converting product of trig. Functions into sum/difference)
       a)    2 sin x cosy = sin (x + y) + sin (x – y)
       b)    2 cosx sin y = sin(x + y) – sin (x – y)
       c)    2 cosx cosy = cos(x + y) + cos (x – y)
       d)    – 2 sin x siny = cos(x + y) – cos (x – y)        or       cos(x – y) – cos (x + y) = 2 sin x siny
IV. Transformation Formulae (Converting sum/difference of trig. Functions into product)
                                 xy        xy
       a) sin x + sin y = 2 sin       cos
                                   2          2
                                 xy       xy
       b) sin x – sin y = 2 cos       sin
                                  2          2
                                 xy        xy
       c) cos x + cos y = 2 cos       cos
                                  2          2
                                  xy       xy
       d) cos x – cos y = – 2 sin       sin
                                    2         2
V. Solution of Trigonometric Equations:
        1.         a) sinx = 0             x = n ; n Z
                                                          
                   b) cos x = 0            x = (2n  1)       ; n Z
                                                          2
                   c) tan x = 0            x = n ; n Z
       2.          a) sin x = sin y        x = n  (1) n y; n Z
                   b) cos x = cos y        x = 2n  y; n Z
                   c) tan x = tan y        x = n  y; n Z
VI     Sine and Cosine rules (Not required for exam):
       a) Sine rule: If a, b, c are sides opposite to angles A, B and C of ΔABC respectively, then
                              a     b     c
                                            k
                            sin A sin B sin C
       b) Cosine rule:
                                                                                    b2  c2  a2
       1.    a  b  c  2bc cos A
               2      2     2
                                                               OR      cosA     =
                                                                                        2bc
                                                                                    c2  a2  b2
       2.    b 2  c 2  a 2  2ca cos B                       OR      cosB     =
                                                                                        2ca
                                                                                    a2  b2  c2
       3.    c 2  a 2  b 2  2ab cosC                        OR       cosC =
                                                                                        2ab
===============================================================================================
Biju Thomas                         mathshelp4u.weebly.com                       XII/Mathematics