0% found this document useful (0 votes)
55 views6 pages

Inverse Trigonometric Guide

The document summarizes key properties of inverse trigonometric functions: 1) It defines the domain and range of the trigonometric and inverse trigonometric functions. 2) It provides important formulas for the inverse trigonometric functions, including their compositions and addition/subtraction formulas. 3) It discusses the principal branches of the inverse trigonometric graphs.

Uploaded by

Perli Raj Kumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
55 views6 pages

Inverse Trigonometric Guide

The document summarizes key properties of inverse trigonometric functions: 1) It defines the domain and range of the trigonometric and inverse trigonometric functions. 2) It provides important formulas for the inverse trigonometric functions, including their compositions and addition/subtraction formulas. 3) It discusses the principal branches of the inverse trigonometric graphs.

Uploaded by

Perli Raj Kumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

Ch. 2.

Inverse Trigonometric Functions

1. The domain and range of the trigonometric functions are as follows:


FUNCTION DOMAIN RANGE
y  sin x R  1,1
y  cos x R  1,1
y  tan x R  n : n  I  R
R   1,1
y  cos ecx R  n : n  I  or
 ,1  1,  
R   1,1
y  sec x   
R   2n  1 : n  I  or
 2   ,1  1,  
y  cot x   
R   2n  1 : n  I  R
 2 
2. The domain and range of the inverse trigonometric functions are as follows:
DOMAIN RANGE

3. Graphs of Inverse Trigonometric Functions (Principal Branch)

===============================================================================================
Biju Thomas mathshelp4u.weebly.com XII/Mathematics
IMPORTANT FORMULAE FOR INVERSE TRIGONOMETRIC FUNCTIONS

𝝅 𝝅
4. 𝒔𝒊𝒏−𝟏 (𝒔𝒊𝒏𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [− 𝟐 , 𝟐 ]
5. 𝒄𝒐𝒔−𝟏 (𝒄𝒐𝒔𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [𝟎, 𝝅 ]
−𝟏 (𝒕𝒂𝒏𝒙) 𝝅 𝝅
6. 𝒕𝒂𝒏 = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− 𝟐 , 𝟐 )
𝝅 𝝅
7. 𝒄𝒐𝒔𝒆𝒄−𝟏 (𝒄𝒐𝒔𝒆𝒄𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [− 𝟐 , 𝟐 ] , 𝒙 ≠ 𝟎
𝝅
8. 𝒔𝒆𝒄−𝟏 (𝒔𝒆𝒄𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [𝟎, 𝝅 ], 𝒙 ≠ 𝟐
9. 𝒄𝒐𝒕−𝟏 (𝒄𝒐𝒕𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (𝟎, 𝝅)
---------------------------------------------------------------------------------------------------------------------------------------------
10. 𝒔𝒊𝒏(𝒔𝒊𝒏−𝟏 𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏 ]
−𝟏
11. 𝒄𝒐𝒔(𝒄𝒐𝒔 𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏 ]
−𝟏
12. 𝒕𝒂𝒏(𝒕𝒂𝒏 𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
−𝟏
13. 𝒄𝒐𝒔𝒆𝒄(𝒄𝒐𝒔𝒆𝒄 𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
−𝟏
14. 𝒔𝒆𝒄(𝒔𝒆𝒄 𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
−𝟏
15. 𝒄𝒐𝒕(𝒄𝒐𝒕 𝒙) = 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
-----------------------------------------------------------------------------------------------------------------------------------------------------------
16. 𝒔𝒊𝒏−𝟏 (−𝒙) = − 𝒔𝒊𝒏−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
17. 𝒄𝒐𝒔−𝟏 (−𝒙) = 𝝅 − 𝒄𝒐𝒔−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
18. 𝒕𝒂𝒏−𝟏 (−𝒙) = − 𝒕𝒂𝒏−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
19. 𝒄𝒐𝒔𝒆𝒄−𝟏 (−𝒙) = − 𝒄𝒐𝒔𝒆𝒄−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
20. 𝒔𝒆𝒄−𝟏 (−𝒙) = 𝝅 − 𝒔𝒆𝒄−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
−𝟏 (−𝒙) −𝟏
21. 𝒄𝒐𝒕 = 𝝅 − 𝒄𝒐𝒕 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
-----------------------------------------------------------------------------------------------------------------------------------------------------------

===============================================================================================
Biju Thomas mathshelp4u.weebly.com XII/Mathematics
𝟏
22. 𝒄𝒐𝒔−𝟏 (𝒙) = 𝒔𝒆𝒄−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
𝟏
23. 𝒔𝒊𝒏−𝟏 ( ) = 𝒄𝒐𝒔𝒆𝒄−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)
𝒙

𝟏 𝒄𝒐𝒕−𝟏 𝒙 , 𝒇𝒐𝒓 𝒙 > 𝟎


24. 𝒕𝒂𝒏−𝟏 (𝒙) = {
− 𝜋 + 𝑐𝑜𝑡 −1 𝑥 , 𝑓𝑜𝑟 𝑥 < 0
𝟏 𝒕𝒂𝒏−𝟏 𝒙 , 𝒇𝒐𝒓 𝒙 > 𝟎
25. 𝒄𝒐𝒕−𝟏 (𝒙) = {
𝜋 + 𝑡𝑎𝑛−1 𝑥 , 𝑓𝑜𝑟 𝑥 < 0
𝟏
26. 𝒄𝒐𝒔𝒆𝒄−𝟏 ( ) = 𝒔𝒊𝒏−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
𝒙
𝟏
27. 𝒔𝒆𝒄−𝟏 (𝒙) = 𝒄𝒐𝒔−𝟏 𝒙, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]

-----------------------------------------------------------------------------------------------------------------------------------------------------------
𝝅
28. 𝒔𝒊𝒏−𝟏 𝒙 + 𝒄𝒐𝒔−𝟏 𝒙 = 𝟐
, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 [−𝟏, 𝟏]
𝝅
29. 𝒕𝒂𝒏−𝟏 𝒙 + 𝒄𝒐𝒕−𝟏 𝒙 = 𝟐
, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 𝑹
−𝟏 −𝟏 𝝅
30. 𝒔𝒆𝒄 𝒙 + 𝒄𝒐𝒔𝒆𝒄 𝒙= 𝟐
, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 𝝐 (− ∞, −𝟏] ∪ [𝟏, ∞)

-----------------------------------------------------------------------------------------------------------------------------------------------------------
𝒙+𝒚
𝒕𝒂𝒏−𝟏 (𝟏 − 𝒙𝒚) , 𝒊𝒇 𝒙𝒚 < 𝟏
𝑥+𝑦
31. 𝒕𝒂𝒏−𝟏 𝒙 + 𝒕𝒂𝒏−𝟏 𝒚 = 𝜋 + 𝑡𝑎𝑛−1 ( ), 𝑖𝑓 𝑥 > 0, 𝑦 > 0 𝑎𝑛𝑑 𝑥𝑦 > 1
1 − 𝑥𝑦
𝑥+𝑦
{− 𝜋 + 𝑡𝑎𝑛−1 ( ), 𝑖𝑓 𝑥 < 0, 𝑦 < 0 𝑎𝑛𝑑 𝑥𝑦 > 1
1 − 𝑥𝑦

𝒙−𝒚
𝒕𝒂𝒏−𝟏 (𝟏 + 𝒙𝒚) , 𝒊𝒇 𝒙𝒚 > −𝟏
𝑥−𝑦
32. 𝒕𝒂𝒏−𝟏 𝒙 − 𝒕𝒂𝒏−𝟏 𝒚 = 𝜋 + 𝑡𝑎𝑛−1 ( ), 𝑖𝑓 𝑥 > 0, 𝑦 < 0 𝑎𝑛𝑑 𝑥𝑦 < − 1
1 + 𝑥𝑦
𝑥−𝑦
{− 𝜋 + 𝑡𝑎𝑛−1 (1 + 𝑥𝑦) , 𝑖𝑓 𝑥 < 0, 𝑦 > 0 𝑎𝑛𝑑 𝑥𝑦 < − 1

𝑥 + 𝑦 + 𝑧 − 𝑥𝑦𝑧
33. 𝑡𝑎𝑛−1 𝑥 + 𝑡𝑎𝑛−1 𝑦 + 𝑡𝑎𝑛−1 𝑧 = 𝑡𝑎𝑛−1 (1 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥)

-----------------------------------------------------------------------------------------------------------------------------------------------------------

𝒔𝒊𝒏−𝟏 [𝒙√𝟏 − 𝒚𝟐 + 𝒚√𝟏 − 𝒙𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙𝟐 + 𝒚𝟐 ≤ 𝟏


34. 𝒔𝒊𝒏−𝟏 𝒙 + 𝒔𝒊𝒏−𝟏 𝒚 = 𝜋 − 𝑠𝑖𝑛−1 [𝑥√1 − 𝑦 2 + 𝑦√1 − 𝑥 2 ] , 𝑖𝑓 0 ≤ 𝑥, 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 2 + 𝑦 2 > 1
−1 2 2 2 2
{− 𝜋 − 𝑠𝑖𝑛 [𝑥√1 − 𝑦 + 𝑦√1 − 𝑥 ] , 𝑖𝑓 − 1 ≤ 𝑥, 𝑦 ≤ 0 𝑎𝑛𝑑 𝑥 + 𝑦 > 1

35. 𝒔𝒊𝒏−𝟏 𝒙 − 𝒔𝒊𝒏−𝟏 𝒚 =


𝒔𝒊𝒏−𝟏 [𝒙√𝟏 − 𝒚𝟐 − 𝒚√𝟏 − 𝒙𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙𝟐 + 𝒚𝟐 ≤ 𝟏
𝜋 − 𝑠𝑖𝑛−1 [𝑥√1 − 𝑦 2 − 𝑦√1 − 𝑥 2 ] , 𝑖𝑓 0 < 𝑥 ≤ 1; −1 ≤ 𝑦 ≤ 0 𝑎𝑛𝑑 𝑥 2 + 𝑦 2 > 1
−1 2 2 2 2
{− 𝜋 − 𝑠𝑖𝑛 [𝑥√1 − 𝑦 − 𝑦√1 − 𝑥 ] , 𝑖𝑓 − 1 ≤ 𝑥 < 0; 0 < 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 + 𝑦 > 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------

𝒄𝒐𝒔−𝟏 [𝒙𝒚 − √𝟏 − 𝒙𝟐 √𝟏 − 𝒚𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙 + 𝒚 ≥ 𝟎


−𝟏 −𝟏
36. 𝒄𝒐𝒔 𝒙 + 𝒄𝒐𝒔 𝒚={
2𝜋 − 𝑐𝑜𝑠 −1 [𝑥𝑦 − √1 − 𝑥 2 √1 − 𝑦 2 ], 𝑖𝑓 − 1 ≤ 𝑥, 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 + 𝑦 ≤ 0

===============================================================================================
Biju Thomas mathshelp4u.weebly.com XII/Mathematics
𝒄𝒐𝒔−𝟏 [𝒙𝒚 + √𝟏 − 𝒙𝟐 √𝟏 − 𝒚𝟐 ] , 𝒊𝒇 − 𝟏 ≤ 𝒙, 𝒚 ≤ 𝟏 𝒂𝒏𝒅 𝒙 − 𝒚 ≤ 𝟎
−𝟏 −𝟏
37. 𝒄𝒐𝒔 𝒙 − 𝒄𝒐𝒔 𝒚={
−𝑐𝑜𝑠 −1 [𝑥𝑦 + √1 − 𝑥 2 √1 − 𝑦 2 ], 𝑖𝑓 − 1 ≤ 𝑦 ≤ 0; 0 < 𝑥 ≤ 1 𝑎𝑛𝑑 𝑥 − 𝑦 ≥ 0

-----------------------------------------------------------------------------------------------------------------------------------------------------------

38.
 1  x2 
sin 1
 x   cos 1
 1 x 2
  x 
1
 tan 
 1 x 
2
1
  cot 
 x



 1  x2 
cos 1
 x   sin 1
 1 x 2
  x 
1
 cot 
 1 x 
2
1
  tan 
 x



-----------------------------------------------------------------------------------------------------------------------------------------------------------

39.

 
2sin 1  x   sin 1 2 x 1  x 2  cos 1 1  2 x 2  , 
1
2
x
1
2
2 cos 1  x   sin 1  2 x 1  x   cos
2 1
2x 2
 1 ,
1
2
 x 1

 2x 
2 tan 1  x   sin 1  , x  1
1 x 
2

 1  x2 
 cos 1  2 
, x0
1 x 
 2x 
 tan 1  2 
, 1  x  1
1 x 
-----------------------------------------------------------------------------------------------------------------------------------------------------------

40.
3sin 1  x   sin 1  3 x  4 x 3 
3cox 1  x   cos 1  4 x 3  3 x 
 3x  x3 
3 tan 1  x   tan 1  2 
 1  3x 
-----------------------------------------------------------------------------------------------------------------------------------------------------------

41. List of substitutions:


S. No. Form substitution
1 √𝒙𝟐 − 𝒂𝟐 x = acosecθ or x = asecθ
2 √𝒙𝟐 + 𝒂𝟐 x = atanθ or x = acotθ
3 √𝒂𝟐 − 𝒙𝟐 x = acosθ or x = asinθ
4 √𝒂 − 𝒙 & √𝒂 + 𝒙 x = acos2θ or x = acosθ

--------------------------------------------------------------------------------------------------------------------------
===============================================================================================
Biju Thomas mathshelp4u.weebly.com XII/Mathematics
Trigonometric Formulae
I Sum and Difference of angle formulae:

a) Sin( x + y) = sinx cosy + cosx siny


b) Sin(x – y) = sinx cosy – cosx siny
c) Cos(x + y) = cosx cosy – sinx siny
d) Cos(x – y ) = cosx cosy + sin x siny
tan x  tan y
e) tan(x + y) =
1  tan x tan y
tan x  tan y
f) tan(x – y) =
1  tan x tan y
cot x cot y  1
g) cot (x + y) =
cot y  cot x
cot x cot y  1
h) cot (x – y) =
cot y  cot x

II Compound angle Formulae

2 tan x
a) sin 2x = 2sinx cosx =
1  tan 2 x
1  tan 2 x
b) cos 2x = cos2 x  sin 2 x = 1 – 2sin2x = 2 cos2 x  1 =
1  tan 2 x
2 tan x
c) tan 2x =
1  tan 2 x
d) 1 – cos 2x = 2 sin2x
e) 1 + Cos 2x = 2 cos2x
x
f) 1 – cos x = 2 sin2 2
x
g) 1 + cos x = 2 cos2 2

x
2 tan
x x 2
h) Sinx = 2 sin cos 
2 2 x
1  tan 2
2
x
1  tan 2
x 2 x  2 x  2 x  2
i) Cosx = 2 cos2   1  1  2 sin    cos    sin   
2 2 2 2 1  tan 2
x
2
j) Sin 3x = 3 sin x – 4sin3x
k) Cos 3x = 4cos3x – 3 cos x
3 tan x  tan 3 x
l) tan 3x =
1  3 tan 2 x

===============================================================================================
Biju Thomas mathshelp4u.weebly.com XII/Mathematics
III Transformation Formulae (converting product of trig. Functions into sum/difference)

a) 2 sin x cosy = sin (x + y) + sin (x – y)


b) 2 cosx sin y = sin(x + y) – sin (x – y)
c) 2 cosx cosy = cos(x + y) + cos (x – y)
d) – 2 sin x siny = cos(x + y) – cos (x – y) or cos(x – y) – cos (x + y) = 2 sin x siny

IV. Transformation Formulae (Converting sum/difference of trig. Functions into product)

xy xy
a) sin x + sin y = 2 sin cos
2 2
xy xy
b) sin x – sin y = 2 cos sin
2 2
xy xy
c) cos x + cos y = 2 cos cos
2 2
xy xy
d) cos x – cos y = – 2 sin sin
2 2

V. Solution of Trigonometric Equations:

1. a) sinx = 0 x = n ; n Z


b) cos x = 0 x = (2n  1) ; n Z
2
c) tan x = 0 x = n ; n Z

2. a) sin x = sin y x = n  (1) n y; n Z

b) cos x = cos y x = 2n  y; n Z

c) tan x = tan y x = n  y; n Z

VI Sine and Cosine rules (Not required for exam):

a) Sine rule: If a, b, c are sides opposite to angles A, B and C of ΔABC respectively, then
a b c
  k
sin A sin B sin C
b) Cosine rule:
b2  c2  a2
1. a  b  c  2bc cos A
2 2 2
OR cosA =
2bc
c2  a2  b2
2. b 2  c 2  a 2  2ca cos B OR cosB =
2ca
a2  b2  c2
3. c 2  a 2  b 2  2ab cosC OR cosC =
2ab

===============================================================================================
Biju Thomas mathshelp4u.weebly.com XII/Mathematics

You might also like