RT8205L Richtek
RT8205L Richtek
RT8205LZQW RT8205MZQW
EM : Product Code EN : Product Code
EM YM YMDNN : Date Code EN YM YMDNN : Date Code
DNN DNN
Pin Configurations
(TOP VIEW)
UGATE1
UGATE1
PHASE1
PHASE1
LGATE1
LGATE1
PGOOD
PGOOD
BOOT1
BOOT1
VOUT1
VOUT1
24 23 22 21 20 19 24 23 22 21 20 19
ENTRIP1 1 18 NC ENTRIP1 1 18 SECFB
FB1 2 17 VREG5 FB1 2 17 VREG5
REF 3 16 VIN REF 3 16 VIN
GND GND
TONSEL 4 15 GND TONSEL 4 15 GND
FB2 5 25 14 SKIPSEL FB2 5 25 14 SKIPSEL
ENTRIP2 6 13 EN ENTRIP2 6 13 EN
7 8 9 10 11 12 http://www.DataSheet4U.net/
7 8 9 10 11 12
VOUT2
VREG3
BOOT2
UGATE2
PHASE2
VOUT2
LGATE2
VREG3
BOOT2
UGATE2
PHASE2
LGATE2
VIN
6V to 25V
R8
C1 3.9 RT8205M R10 C13 C12
10µF 0 Q2 10µF 10µF
16 VIN UGATE2 10
http://www.DataSheet4U.net/
BSC119
C10
0.1µF 9 RBOOT2 0 N03S
BOOT2
C11 L2
Q1 R4 0 21 UGATE1 0.1µF 4.7µH VOUT2
BSC119 PHASE2 11 3.3V
N03S RBOOT1 0 Q4
22 BOOT1 LGATE2 12 BSC119 R11 C17
220µF
L1 C2 GND 15 N03S
C14
VOUT1 6.8µH 0.1µF
20 PHASE1
5V VOUT2 7
C3 Q3 19 LGATE1
R5 5 C21
220µF BSC119 FB2 R14
N03S RILIM1 6.5k
C4
150k C20
24 VOUT1 ENTRIP1 1 R15 0.1µF
RILIM2 10k
C18 R12 150k
15k 6
2 FB1 ENTRIP2
To be continued
www.richtek.com DS8205L/M-05 June 2011
4
BOOT1 BOOT2
UGATE1 UGATE2
PHASE1
http://www.DataSheet4U.net/
PHASE2
VREG5 VREG5
SMPS1 SMPS2
LGATE1 PWM Buck PWM Buck LGATE2
Controller Controller
VREG5
VREG5
VOUT2
FB1 FB2
ENTRIP1 ENTRIP2
PGOOD
EN Power-On
Sequence
Clear Fault Latch
GND
SW5 Threshold SW3 Threshold
VOUT1
Thermal
Shutdown
VREG5 VREG3
VIN
REF
To be continued
DS8205L/M-05 June 2011 www.richtek.com
7
To be continued
www.richtek.com DS8205L/M-05 June 2011
8
VSECFB = 0V or 5V −1 -- 1
Internal BOOT Switch
Internal Boost Switch
VREG5 to BOOTx, 10mA -- 40 80 Ω
On-Resistance
Power MOSFET Drivers
UGATEx, High State,
-- 4 8
BOOTx to PHASEx Forced to 5V
UGATEx On-Resistance Ω
UGATEx, Low State,
-- 1.5 4
BOOTx to PHASEx Forced to 5V
LGATEx, High State -- 4 8
LGATEx On-Resistance Ω
LGATEx, Low State -- 1.5 4
LGATEx Rising -- 30 --
Dead Time ns
UGATEx Rising -- 40 --
http://www.DataSheet4U.net/
Efficiency (%)
PWM Mode
60 60 PWM Mode
Ultrasonic Mode Ultrasonic Mode
50 50
40 40
30 30
20 20 VIN = 12V, TONSEL = GND,
10 VIN = 8V, TONSEL = GND, VENTRIP1 = 1.5V, 10 VENTRIP1 = 1.5V, ENTRIP2 = GND,
ENTRIP2 = GND, EN = FLOATING EN = FLOATING
0 0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
Load Current (A) Load Current (A)
VOUT1 Efficiency vs. Load Current VOUT2 Efficiency vs. Load Current
100 100
90 90
DEM Mode
80 80 DEM Mode
70 70
Efficiency (%)
Efficiency (%)
60 60
50 PWM Mode 50 PWM Mode
http://www.DataSheet4U.net/
40 40 Ultrasonic Mode
Ultrasonic Mode
30 30
20 20
VIN = 20V, TONSEL = GND, VIN = 8V, TONSEL = GND,
10 VENTRIP1 = 1.5V, ENTRIP2 = GND, 10 ENTRIP1 = GND, VENTRIP2 = 1.5V,
EN = FLOATING EN = FLOATING
0 0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
Load Current (A) Load Current (A)
VOUT2 Efficiency vs. Load Current VOUT2 Efficiency vs. Load Current
100 100
90 90
80 80
70 DEM Mode 70 DEM Mode
Efficiency (%)
Efficiency (%)
60 60
PWM Mode Ultrasonic
50 50 PWM Mode
Mode
40 40
30
Ultrasonic Mode 30
20
VIN = 12V, TONSEL = GND, 20
10 ENTRIP1 = GND, VENTRIP2 = 1.5V, VIN = 20V, TONSEL = GND,
EN = FLOATING 10 ENTRIP1 = GND, VENTRIP2 = 1.5V,
0 EN = FLOATING
0
0.001 0.01 0.1 1 10
0.001 0.01 0.1 1 10
Load Current (A)
Load Current (A)
VOUT1 Switching Frequency vs. Load Current VOUT1 Switching Frequency vs. Load Current
220 220
200 PWM Mode 200 PWM Mode
180 180
160 160
140 140
120 120
100 100
80 80
60
VIN = 8V, VIN = 12V,
60
TONSEL = GND, TONSEL = GND,
40 Ultrasonic Mode EN = FLOATING, 40 Ultrasonic Mode EN = FLOATING,
VENTRIP1 = 1.5V, VENTRIP1 = 1.5V,
20 20
DEM Mode ENTRIP2 = GND DEM Mode ENTRIP2 = GND
0 0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
Load Current (A) Load Current (A)
VOUT1 Switching Frequency vs. Load Current VOUT2 Switching Frequency vs. Load Current
220 280
200 PWM Mode 260 PWM Mode
Switching Frequency (kHz)1
240
180
220
160 200
140 180
160
120
140
100 http://www.DataSheet4U.net/
120
80 100
VIN = 20V, 80 VIN = 8V,
60
TONSEL = GND, TONSEL = GND,
Ultrasonic Mode 60
40 EN = FLOATING, Ultrasonic Mode EN = FLOATING,
40 ENTRIP1 = GND,
20 VENTRIP1 = 1.5V,
DEM Mode 20 DEM Mode VENTRIP2 = 1.5V
ENTRIP2 = GND
0 0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
Load Current (A) Load Current (A)
VOUT2 Switching Frequency vs. Load Current VOUT2 Switching Frequency vs. Load Current
280 280
260 PWM Mode 260 PWM Mode
Switching Frequency (kHz) 1
240 240
220 220
200 200
180 180
160 160
140 140
120 120
100 100
80 VIN = 12V, 80 VIN = 20V,
TONSEL = GND, TONSEL = GND,
60 60
Ultrasonic Mode EN = FLOATING, Ultrasonic Mode EN = FLOATING,
40 ENTRIP1 = GND, 40 ENTRIP1 = GND,
20 DEM Mode VENTRIP2 = 1.5V 20 DEM Mode VENTRIP2 = 1.5V
0 0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
Load Current (A) Load Current (A)
VOUT1 Output Voltage vs. Load Current VOUT2 Output Voltage vs. Load Current
5.090 3.446
VIN = 12V, VIN = 12V,
5.084 3.440
Ultrasonic Mode TONSEL = GND, TONSEL = GND,
5.078 Ultrasonic Mode EN = FLOATING,
EN = FLOATING, 3.434
5.072 VENTRIP1 = 1.5V, ENTRIP2 = GND,
5.066
Output Voltage (V)
VREG5 Output Voltage vs. Output Current VREG3 Output Voltage vs. Output Current
5.006 3.358
5.002
3.354
4.998
Output Voltage (V)
3.350
4.994
4.990 3.346
4.986 http://www.DataSheet4U.net/
3.342
4.982
3.338
4.978
3.334
4.974 VIN = 12V, ENTRIP1 = ENTRIP2 = GND, VIN = 12V, ENTRIP1 = ENTRIP2 = GND,
EN = FLOATING, TONSEL = GND EN = FLOATING, TONSEL = GND
4.970 3.330
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70
Output Current (mA) Output Current (mA)
Reference Voltage vs. Output Current Battery Current vs. Input Voltage
2.0080 100.0
PWM Mode
2.0072
2.0064
Reference Voltage (V)
2.0056
10.0
2.0048
2.0040 Ultrasonic Mode
2.0032
1.0
2.0024
DEM Mode
2.0016
2.0008 VIN = 12V, ENTRIP1 = ENTRIP2 = GND, VENTRIP1 = VENTRIP2 = 0.91V,
EN = FLOATING, TONSEL = GND TONSEL = GND, EN = FLOATING
2.0000 0.1
-10 0 10 20 30 40 50 60 70 80 90 100 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Output Current (μA) Input Voltage (V)
Standby Input Current vs. Input Voltage Shutdown Input Current vs. Input Voltage
250 22
249
20
248
247 18
246
16
245
14
244
243 12
242
ENTRIP1 = ENTRIP2 = GND, 10
241
EN = FLOATING, No Load ENTRIP1 = ENTRIP2 = EN = GND, No Load
240 8
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 7 9 11 13 15 17 19 21 23 25
Input Voltage (V) Input Voltage (V)
2.005
(5V/Div)
2.002
1.999 VREG3
1.996
(2V/Div)
http://www.DataSheet4U.net/
1.993
REF
1.990 (2V/Div)
VIN = 12V, ENTRIP1 = ENTRIP2 = GND, EN
1.987
EN = FLOATING, TONSEL = GND (5V/Div) VIN = 12V, TONSEL = GND, No Load
1.984
-50 -25 0 25 50 75 100 125 Time (400μs/Div)
Temperature (°C)
VOUT1
(1V/Div)
PGOOD VOUT2
(5V/Div) (1V/Div)
PGOOD
(5V/Div)
ENTRIP1
VENTRIP1 = 1.5V, ENTRIP2 = GND, ENTRIP1 = GND, VENTRIP2 = 1.5V,
(1V/Div) EN = FLOATING, VIN = 12V,
ENTRIP2 EN = FLOATING, VIN = 12V,
TONSEL = GND, SKIPSEL = GND, TONSEL = GND, SKIPSEL = GND,
No Load (1V/Div) No Load
VOUT1
(5V/Div)
CP VOUT1
(10V/Div) (2V/Div)
UGATE VOUT2
(20V/Div) (1V/Div)
LGATE ENTRIP1
(10V/Div) VENTRIP1 = VENTRIP2 = 1.5V, EN = FLOATING, (2V/Div)
VIN = 12V, TONSEL = GND,
VIN = 12V, TONSEL = GND, SKIPSEL = REF, ENTRIP2 EN = FLOATING, SKIPSEL = GND,
No Load (2V/Div) No Load
VOUT1
VOUT1
(2V/Div)
(2V/Div)
PGOOD
(5V/Div)
VOUT2 ENTRIP1
http://www.DataSheet4U.net/
(1V/Div) (2V/Div)
ENTRIP1 No Load on VOUT1, VOUT2,
(2V/Div) VREG5, VREG3 and REF
ENTRIP2 VIN = 12V, TONSEL = GND, LGATE1
EN = FLOATING, SKIPSEL = GND, (5V/Div)
(2V/Div) No Load
VOUT1_ac
(50mV/Div)
VOUT2
(2V/Div) Inductor
PGOOD Current
(5V/Div) (5A/Div)
ENTRIP2
(2V/Div)
UGATE1
(20V/Div) VIN = 12V, TONSEL = GND, SKIPSEL = GND
LGATE2
(5V/Div) VIN = 12V, TONSEL = GND, SKIPSEL = GND, LGATE1
EN = FLOATING, No Load on VOUT1, VOUT2,
VREG5, VREG3 and REF
(5V/Div) EN = FLOATING, IOUT1 = 0A to 6A
VOUT2_ac
(50mV/Div)
Inductor
Current VOUT1
(5A/Div) (2V/Div)
UGATE VOUT2
(20V/Div) (2V/Div)
VIN = 12V, TONSEL = GND, SKIPSEL = GND
PGOOD
(5V/Div)
LGATE VIN = 12V, TONSEL = GND, SKIPSEL = REF,
(5V/Div) EN = FLOATING, IOUT2 = 0A to 6A EN = FLOATING, No Load
UVP
VIN = 12V,
TONSEL = GND,
SKIPSEL = GND,
EN = FLOATING,
No Load
VOUT1
(2V/Div)
PGOOD
(5V/Div) http://www.DataSheet4U.net/
UGATE
(20V/Div)
LGATE
(5V/Div)
Time (100μs/Div)
0
t The low noise, Forced CCM mode (SKIPSEL = GND)
tON
disables the zero crossing comparator, which controls
Figure 1. Boundary Condition of CCM/DEM the low side switch on-time. This causes the low side
Soft-Start
SECFB RCP2
LGATE1 The RT8205L/M provides internal soft-start function to
CF
RCP1
prevent large inrush current and output voltage overshoot
C1 C3
D2 D3 D4 when the converter starts up. The soft-start (SS)
CP
automatically begins once the chip is enabled. During soft-
D1 C2 C4
start, the voltage is clamped to the ramping of internal
VOUT1 reference voltage which is compared with FBx signal. The
Figure 3. Charge Pump Circuit Connected to SECFB typical soft-start duration is 2ms. An unique PWM duty
limit control that prevents output over voltage during soft-
MOSFET Gate Driver (UGATEx, LGATEx)
start period is designed specifically for FBx floating.
The high side driver is designed to drive high current, low
RDS(ON) N-MOSFET(s). When configured as a floating driver, UVLO Protection
a 5V bias voltage is delivered from the VREG5 supply. The RT8205L/M features VREG5 under voltage lockout
The average drive current is calculated by the gate charge protection (UVLO). When the VREG5 voltage is lower than
at V GS = 5V times the switching frequency. The 3.9V (typ.) and the VREG3 voltage is lower than 2.5V
instantaneous drive current is supplied by the flying (typ.), both switch power supplies are shut off. This is
capacitor between the BOOTx and PHASEx pins. A dead non-latch protection.
time to prevent shoot through is internally generated
between the high side MOSFET off to, the low side Power Good Output (PGOOD)
MOSFET on, and the low side MOSFET off to the high PGOOD is an open-drain type output and requires a pull-
side MOSFET on. up resistor. PGOOD is actively held low in soft-start,
high side switch, completely turning on the low side sufficient hysteresis for most applications.
MOSFET can create an electrical short between the
battery and GND, which will blow the fuse and disconnect Power Up Sequencing and On/Off Controls
the battery from the output. (ENTRIPx)
ENTRIP1 and ENTRIP2 control the SMPS power up
Output Under Voltage Protection (UVP) sequencing. When the RT8205L/M is in single channel
The output voltage can be continuously monitored for under mode, ENTRIP1 or ENTRIP2 enables the respective
voltage protection. If the output is less than 52% of its set outputs when ENTRIPx voltage rises above 0.515V.
voltage threshold, under voltage protection will be triggered, Since current source form ENTRIPx has 4700ppm/°C
and then both UGATEx and LGATEx gate drivers will be temperature slope, please make sure that ENTRIPx voltage
forced low. The UVP will be ignored for at least 5ms (typ.) is high enough to enable the respective output in low
after start up or a rising edge on ENTRIPx. Toggle ENTRIPx temperature application.
or cycle VIN to reset the UVP fault latch and restart the
If ENTRIPx pin becomes higher than the enable threshold
controller.
voltage while another channel is starting up, soft-start is
Thermal Protection postponed until the other channel's soft-start has
The RT8205L/M features thermal shutdown protection to completed. If both ENTRIP1 and ENTRIP2 become higher
prevent overheat damage to the device. Thermal shutdown than the enable threshold voltage simultaneously (within
occurs when the die temperature exceeds 150°C. All 60μs), both channels will be start up simultaneously. The
internal circuitry is inactive during thermal shutdown. The timing diagrams of the power sequence is shown below
RT8205L/M triggers thermal shutdown if VREGx is not (Figure 5).
0.515V 0.515V
VENTRIPy VENTRIPy
VOUTx VOUTx
VOUTx and GND to adjust the respective output voltage ripple or LIR) determine the inductor value as shown in
between 2V and 5.5V (Figure 6). Refering to Figure 5 as the following equation :
an example, choose R2 to be approximately 10kΩ, and tON × (VIN − VOUTx )
solve for R1 using the equation : L=
LIR × ILOAD(MAX)
⎛ ⎛ R1 ⎞ ⎞
VOUTx = VFBX × ⎜ 1+ ⎜ ⎟⎟ where LIR is the ratio of the peak to peak ripple current to
⎝ ⎝ R2 ⎠ ⎠
the average inductor current.
where VFBX is 2V. Find a low loss inductor having the lowest possible DC
VIN resistance that fits in the allotted dimensions. Ferrite cores
are often the best choice, although powdered iron is
VOUTx
UGATEx inexpensive and can work well at 200kHz. The core must
PHASEx be large enough not to saturate at the peak inductor current
LGATEx (IPEAK) :
R1
VOUTx IPEAK = ILOAD(MAX) + ⎡⎣(LIR / 2) × ILOAD(MAX) ⎤⎦
FBx
⎛ 1 ⎞ 0.8
VP−P = LIR × ILOAD(MAX) × ⎜ ESR + ⎟
⎝ 8 × COUT × f ⎠
0.4
where VSAG and VSOAR are the allowable amount of
undershoot voltage and overshoot voltage in the load
0.0
transient, Vp-p is the output ripple voltage, tOFF(MIN) is the 0 25 50 75 100 125
minimum off-time, and K is a factor listed in from Table 1. Ambient Temperature (°C)
http://www.DataSheet4U.net/
D2 SEE DETAIL A
D
L
1
E E2
1 1
2 2
e b
DETAIL A
A
A3 Pin #1 ID and Tie Bar Mark Options
A1
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.