Acs-1000 10105
Acs-1000 10105
ACS-1000
Analog Control System
* Notebook is excluded.
u Features
“ ACS ” is an acronym for “Analog
● Control engineering is an exciting discipline. It offers the
Control System” ; a laboratory teaching
quickest and best way to learn system control to improve
system with analog control courses for
production processes. Electronic analog control and
college and university level .
simulation have become the cornerstone of technological
advancement. “ACS” is a true hardware
K&H provides ACS-1000 for students to observe the testing arithmetic modeling system
result of Proportional-Integral-Derivative (PID) controllers
as well as phase-lag and phase-lead controllers.
------ Not just a trainer ------
3. ACS-13003 I-Controller
1
Vi KI s
RANGE Vo
TEST1 TEST2
ACS-1000 + ACS-13022 + PC
5. ACS-13005 SUM/DIF Amplifier
+
V1 +
V2 +
+ K VO
V3
- - -
V4 V5 V6
ACS-1000 + PC-Based DSO + PC TEST
TSO-1000 (1) 3 positive inputs and 3 negative inputs for the sum
of analog signals
(2) Continuous 0~10 amplifier gain K (precision 10-turn
+ potentiometer)
(3) With push-button R-CAL.3 for displaying K on the
7-segment display of ACS-13016
ACS-1000 + DSO + PC (4) With over-range test output
uModules Specification
6. ACS-13006 Integrator
1. ACS-13001 Summing Junction
Vi T
1 1
initial
I.C. 0 VO
-1 s
INI. C
SYNC. OP
TEST
Vi 2 -K Vo 2
Vi1 -1 Vo1
10. ACS-13009 LEAD / LAG Compensator (1) Analog input voltage : 0~± 4V; input
Vi
impedance : 1KΩ; gain : 3
TEST1 1 (2) Analog output voltage : 0 ~±12V; Max
z
+ TEST3 TEST2 output current : 1A
+
+ 1 + + p
s T VO (3) Input amplitude limitation : ±12V
-
(4) Output with short-circuit and current-
(1) z and p parameters : 0~10 limiting protection : 1.5A
(2) T parameter : 1, 10, 100 (5) 2mm to BNC adapter
(3) With push-buttons R-CAL.8 and R-CAL.9 for displaying
z and p on the 7-segment display of ACS-13016
(4) With over-range test output
(1) Provide input signals to control systems (1) Analog input voltage : 0~±12V
(2) STEP generator with positive and negative output (2) Input impedance : 100KΩ
(3) RAMP generator with positive output (3) PWM output : 0~+12V, bridge PWM drive,
(4) PARABOLIC generator with positive output Max. output current : 1A
(5) Amplitude associates with offset : -10V~+10V (4) With dead band elimination for protection
(6) Frequency : (precision 10-turn potentiometer)
(5) Output with short circuit and current-
Range x1 : 0.05Hz~10Hz
Range x10 : 0.5Hz~100Hz limiting protection : 1.5A
STEP
}List of Experiments
18. ACS-13022 Data Acquisition Device (DAQ)
1. Laplace transform experiment
ACS-13022 DAQ module with software interface is used 2. System simulation experiment
to measure and record all experimental waveforms.
3. Steady-state error experiment
(1) Channel Vi1/ Vi2 :
4. First-order system experiment
• Input range :
X1 : -10V~+10V 5. Second-order system experiment
X2 : -20V~+20V 6. Transient response specifications experiment
Bandwidth : 500Hz 7. Effects of zeros on first-order system experiment
Sample rate : 2500S/s 8. Effects of zeros on second-order system experiment
(2) Channel Vo : 9. Dominant pole of second-order system experiment
• Output range : DC -5V~+5V
(3) Connective : USB port on the front panel
10. DC Servo motor characteristics experiment
11. Proportional controller experiment
Computer requirements:
(1) Pentium 4 or above
12. P controller in DC servo motor speed/position control experiment
(2) Above 1GB hard disk space 13. Integral controller experiment
(3) DVD driver for software installation 14. I controller in DC servo motor speed/position control experiment
(4) Available USB port 15. Derivative controller experiment
(5) Windows W7/Vista/XP/2000 32 and 64 bit OS 16. D controller in DC servo motor speed/position control experiment
17. Proportional-Integral (PI) controller experiment
19. ACS-18001 DC Servo Motor & Control Unit 18. PI controller in DC servo motor speed/position control experiment
19. Proportional-Derivative (PD) controller experiment
20. PD controller in DC servo motor speed/position control experiment
21. PID controller experiment(1) Ziegler-nichols method (1)
22. PID controller experiment(2) Ziegler-nichols method (2)
23. PID controller experiment(3) Position control
24. PID controller experiment(4) Speed control
25. Closed loop DC servo motor speed/position control with
PID controller experiment
26. Inner-loop feedback control experiment
K 1 27. Phase lead compensators experiment(1) Root locus technique
Vi K2 VO
τms+1 S 28. Phase lead compensators experiment(2) Frequency
Dead-Zone Reducer domain design
+ +
Saturation Potentiometer
K1 Ta 29. Phase lag compensators experiment(1) Root locus technique
30. Phase lag compensators experiment(2) Frequency
Break(load) Motor Tachometer Reducer Potentiometer domain design
Ta 31. Phase lead-lag compensators experiment(1) Root locus technique
ON V+
HIGH 32. Phase lead-lag compensators experiment(2) Root locus technique
OFF
LOW M T 64:1 V0 33. Phase lead-lag compensators experiment(3) Frequency
OFF
V- domain design
Tb 34. Pole-zero cancellation experiment
Ma Mb 35. State feedback pole assignment experiment
ACS-13007A
ACS-13001
ACS-13022
ACS-18001
ACS-13011
ACS-13002
ACS-13012
ACS-13004
ACS-13014
ACS-13003
ACS-13006
ACS-13007
ACS-13010
ACS-13008
ACS-13009
ACS-13013
ACS-13016
ACS-13005
ACS-13015
Modules
List of Experiments