0% found this document useful (0 votes)
74 views14 pages

RGB 1

1. The document provides specifications for designing a reinforced concrete beam, including material properties, loading conditions, and design checks. 2. The beam is designed as 200mm wide and 500mm deep, with 5-16mm diameter tension bars at the support and midspan, and 10mm diameter stirrups spaced at 3@50mm, 10@90mm, and the remainder at 200mm. 3. Design checks confirm the beam section is adequate to resist the applied moment and shear loads with a safety factor of at least 0.9 for moments and 0.75 for shear.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
74 views14 pages

RGB 1

1. The document provides specifications for designing a reinforced concrete beam, including material properties, loading conditions, and design checks. 2. The beam is designed as 200mm wide and 500mm deep, with 5-16mm diameter tension bars at the support and midspan, and 10mm diameter stirrups spaced at 3@50mm, 10@90mm, and the remainder at 200mm. 3. Design checks confirm the beam section is adequate to resist the applied moment and shear loads with a safety factor of at least 0.9 for moments and 0.75 for shear.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 14

REINFORCED CONCRETE BEAM

RGB - 1
Input Parameters :
Sup Mid
Standard Specs Moment Capacity Top Bot Shear Capacity
fc' = 21 Mpa Tension Bar, Dt = 3 3 bw = 200 mm fyt =
fy = 275 Mpa Tension Bar 2-L, Nb = 0 0 h = 500 mm Av =
b₁ = .85 Compression Bar, Dc = 2 2 Sb = 10 mm Stirrups Bar Ø
Es = 200 Gpa Main Bar dia, D = 16 Cc = 40 mm, Clear Covering
Moment, Mu = 54.6 53.2
CONDITION : Val = 0.65+0.25 (Ԑt - Ԑty/0.005 - Ԑty)
Ø = 0.65 , Ԑt ≤ Ԑty 3-16mmØ
Val , Ԑty ˂ Ԑt ˂ 0.005 -- -- --
0.90 , Ԑt ≥ 0.005
Location of d' & dt; Support Midspan
As1 = π D² Db /4 = 603.19 603.19
2L, As2 = π D² Nb /4 = 0.00 0.00
y = (As1 y1+As2 y2)/As = 0.00 0.00 2-16mmØ
d' = Cc + Sb + (D/2) + y = 58.00 58.00
dt = h - d' = 442.00 442.00
CHECKING : εt ≥ 0.004, Support Midspan
Cmax = 600 dt / fsmin +600 = 189.4 189.43
amax = β1 Cmax = 161.0 161.01 2-16mmØ
Asmax = 0.85f'c amax bw / fy = 2090.26 2090.26
a = (As fy- As' fy)/0.85 fc' b = 46.46 46.46
C= a/β1 = 54.66 54.66
fs' = 600 (C-d')/C = -36.62 -36.62
fs' = Compression Bars = Not Yield Not Yield -- -- --
fs = 600 (dt-C)/C = 4251.51 4251.51 3-16mmØ
fs = Tension Bars = Yield Yield
BEAM MOMENT CAPACITY; Ø = 0.9 CHECK SHEAR; Ø = 0.75
As fy =0.85fc' β1 C bw + As' fs'; Where, fs' = (600 C-d'/C) Vc = 0.17 √fc' bw dt = 69
Support Midspan Vsmax = 0.67 √fc' bw dt = 271
C= by quadratic = 56.69 56.69 Vs = (Vu/Ø ) - Vc = 31.13
a= β1 C = 48.19 48.19 Section is Adequate
fs' = 600 (C-d')/C = -13.84 -13.84 Av = 2 (π Sb²/4)= 157.1
fs = 600 (dt-C)/C = 4077.91 4077.91 Vs ≤ 0.33√f'c bw d, d/2
Mn = Cc[dt-(a/2)] + Cs (dt-d') = 69.76 69.76 Max S, w/c or 600mm otherwise
ever is
SUPPORT, ØMn = 62.78 > 54.56 Pass! lesser,mm Vs > 0.33√f'c bw d,
MIDSPAN, ØMn = 62.78 > 53.22 Pass! d/4 or 300mm

Therefore use 200x500with 5-16mmØ @ support and 5-16mmØ @ midspan Main Bars (Grade 40);
10mmØ 2 leg-stirrups: Sp. at 3@50, 10@90 and rest 200 O.C

359.99 359.99
C 56.69 56.69
Mn 69.76 69.76
INPUT ON BLUE COLORS ONLY

hear Capacity
fyt = 230 3
Av = 2 3
Stirrups Bar Ø Main Bar Spacing Calculator
Clear Covering Sup Main Bar, S = 36 > 25mm >
Mid Main Bar, S = 36 > 25mm >
200
S Dimensional Limits, 418.6.2.1 150
U bw ≥ max[.3h, 200mm] Ok! 200
P As
P Main Reinforcements Ratio Limits, 418.6.3.1 603.19 603.19 603.19
O Asmin < As > Asmax, Ok! 2210 2210 603.19
R Asmin < As > Asmax, Ok! 450.036364 450.036364
T 368.272447 368.272447
Main Reinforcements, 418.6.3.2 450.036364 450.036364
Mumin ≥ 0.25 Mumax Ok! fy Grade 2
230 33 3
275 40 4
M 2
I 3 3 415 60
D 2 2 0-16mmØ
S 2 2 0-16mmØ
P
A
N Add extra Stirrups to increase area of Shear resisting steel, Av
NSCP 2015 418.6.4
Beam mark Beam Length, Vu Vs Smax Req per
< 75.00 on critical m Seismic
KN 0 - 0.15m 75.00 31.13 533.8 50.00
< 271.42
2h 0.15 - 1m 50.00 (2.20) 7,553.1 96.00

> 2h > 1m 50.00 (2.20) 7,553.1 221.00

54.6 13.64075
53.2
(Grade 40);

110.5
96
AAV 150
2 AAV 221.00 221 50
3 AAAV 221.00 221 96
4 AAAAV 221.00 221 221

Av =
0.15
1.00 .5Vc 34.43 221 221
2Vc 137.73 221 221.0
Shear force 4Vc 275.47 110.5 533.8
Grade 40 ( ) with
Main Bars ;
5 5
- @ midspan @ stirrups :
x
Ø @ support and
Sup
Mid
b= 200 As fy = 165,876.09 As fy = 165,876.09
h= 500 5f'c B c b = 3034.5c B c b = 3,034.50
fc' = 21 A's = 402.123859659 A's = 402.12
fy = 275 As = 603.19 As = 603.19 b₁ =
b₁ = .85 d' = 58.00 d' = 58.00
Es = 200 442.0 442.00
dt = dt =
C= 56.692 C= 56.69

Asmax 1 1
2090.26 0 0 0 0 FALSE
2090.26 0 0 0 0 FALSE
0 #N/A 0 #N/A

dt = 442.0 442.00
C= 56.692 56.69

Thus, Not Ok!

f's -36.62
CP 2015 418.6.4 C= 56.692
Stirrups Spacing
Qty mm fs -600.00
3.00 50.00 Pass! First Stirrups Min of 50mm from Face of Support
0.85 0.9
10.00 90.00 Pass!

Rest 200.00 Pass!

Ø= 0.65 0.65
1.9613478 1.9613478
0.9 0.9

50.00
96.00
221.00
at o.c.
Must not Exceed

0.15 ⅓ √f'c bw d d/2 d/4


135.03 221 110.5

2
with 0 - extra
with 0- extra
0.9
REINFORCED CONCRETE BEAM
B-7
Input Parameters :
Sup Mid
Standard Specs Moment Capacity Top Bot Shear Capacity
fc' = 21 Mpa Tension Bar, Dt = 3 3 bw = 250 mm
fy = 275 Mpa Tension Bar 2-L, Nb = 0 0 h = 450 mm
b₁ = .85 Main Bar dia, D = 16 Sb = 10 mm
Es = 200 Gpa Moment, Mu = 107.0 30.0 Cc = 40 mm,
CONDITION ;
Val = 0.65+0.25(Ԑt - Ԑty/0.005 - Ԑty) ρ < ρmin, As is not Adequate for Beam Dim
Ø = 0.65 , Ԑt ≤ Ԑty if fs > fy, use fy 3-16mmØ
Val , Ԑty ˂ Ԑt ˂ 0.005 fs < fy, use fs -- -- --
0.90 , Ԑt ≥ 0.005
Location of d' & dt; Support Midspan
As1 = π D² Db /4 = 603.19 603.19
2L, As2 = π D² Nb /4 = 0.00 0.00
y = (As1 y1+As2 y2)/As = 0.00 0.00 2-16mm
d' = Cc + Sb + (D/2) + y = 58.00 58.00
dt = h - d' = 392.00 392.00
CHECKING ; Support Midspan
ρ= As / b dt = 0.0062 0.0062
ρmin = 1.4 / fy = 0.0051 0.0051 2-16mm
ρb = 0.85fc' β1 600/fy(600+fy) = 0.0378 0.0378
Therefore ρ < ρb ρ < ρb
Tension Steel Yield Yield
CHECK SHEAR ; Ø = 0.75
Vc = 0.17 √fc' bw dt = 76.35 < 0.00 -- -- --
Vsmax = 0.67 √fc' bw dt = 300.89 KN 3-16mm
Vs = (Vu/Ø ) - Vc = (76.35) < 300.89
Section is Adequate
Av = 4 (π Sb²/4) = 314.2
Vs ≤ 0.33√f'c bw d, d/2
Max S, w/c or 600mm otherwise
ever is
lesser,mm Vs > 0.33√f'c bw d,
d/4 or 300mm

BEAM MOMENT CAPACITY @ SUPPORT; Ø= 0.90 BEAM MOMENT CAPACITY @ MIDSPAN; Ø =


Direct Substitution Direct Substitution

----- ----- SUPPORT ----- ----- MIDSPAN


----- ----- = ----- ----- ----- = -----
----- ----- = ----- ----- ----- = -----
ω= ρ fy / fc' = 0.08 ω= ρ fy / fc' = 0.08
Mn = fc' ω bw dt² (1-0.59ω) = 61.93 Mn = fc' ω bw dt² (1-0.59ω) = 61.93
ØMn = 55.74 < 107.00 Fail! ØMn = 55.74 > 30.00 Pass!

Therfore use, 250x450 with 5-16mmØ @ support and 5-16mmØ @ midspan Main Bars (Grade 40);
10mmØ 4 leg-stirrups: Sp. at 1@50, 9@90 and rest 150 O.C, BOTH ENDS.
ω= ρ fy / fc' = 0.081 0.081
ØMn = fc' ω bw dt² (1-0.59ω) = 61.93 61.93
As fs [dt-(a/2)] 275 275
fs = 600 (dt-C)/C 952.19 952.19
Solve fs, From Strain Diagram, [ΣFh = 0], T = C
0.003 = C (fs / Es) / (d-C); Where fs = 600 (dt-C)/C > >
As fy = 0.85fc' β1 C bw ρ > ρmin ρ > ρmin
C= by quadratic 151.53 151.53 ρ < ρb ρ < ρb
a= β1 C 128.80 128.80

359.99 359.99
C 151.53 151.53
Mn 54.34 54.34
54.34 54.34
INPUT ON BLUE COLORS ONLY

Shear Capacity
fyt = 230
Av = 4
Stirrups Bar Ø Main Bar Spacing Calculator
Clear Covering Sup Main Bar, S = 61 > 25mm >
Mid Main Bar, S = 61 > 25mm >
200
S Dimensional Limits, 418.6.2.1 135
U bw ≥ max[.3h, 200mm] Ok! 200
P
P Main Reinforcements Ratio Limits, 418.6.3.1 Sup
O Asmin < As > Asmax, Ok! Support Mid
R Asmin < As > Asmax, Ok! Midspan d'
T 0.75
Main Reinforcements, 418.6.3.2 0.75
Mumin ≥ 0.25 Mumax Ok fy Grade
230 33
275 40
M
I 415 60
D 26.75 107.0
S 30.0
P
A
N Add extra Stirrups to increase area of Shear resisting steel, Av
NSCP 2015 418.6.4
Beam mark Beam Length, Vu Vs Smax
on critical m
0 - 0.05m - (76.35) 388.0

2h 0.05 - 0.9m - (76.35) 388.0

Mid > 0.9m - (76.35) 388.0


0.90
1
0 0
MIDSPAN 0 0
----- 0 #N/A
-----
0.08
61.93
Pass! d/4 98
96
n Bars (Grade 40); 150
DS. AAAAV 196.00 196 50
2 AAV 196.00 196 96
3 AAAV 196.00 196 196
4 AAAAV

Av =
0.05
0.90 .5Vc 38.17 196
2.25 2Vc 152.69 196
Shear force 4Vc 305.4 98
Grade 40 ( ) with
RS ONLY Main Bars ;
5 5
- @ midspan @ stirrups :
x
Ø @ support and
Sup
Mid
b= 250 As fy = 165,876.09 As fy = 165,876.09
3 h= 4505f'c B c b = 3793.125c B c b = 3,793.12
3 fc' = 21 A's = A's =
2450 2450 fy = 275 As = 603.19 As = 603.19
603.19 603.19 b₁ = .85 d' = 58.00 d' = 58.00
sup mid Es = 200 392.0 392.00
408.26583 408.26583 dt = dt =
498.90909 498.90909 C= 151.528 C= 151.53
498.90909 498.90909
As Asmax
603.19 ρ < ρb 0
603.19 ρ < ρb 0

1.5 2 0.75 2
0.75 2 0.75 2
2 < Yield dt = 392.0 392.00
3 < Yield C= 151.528 151.53
4 0.005091

Thus, Not Ok!


0-16mmØ
0-16mm

f's #REF!
NSCP 2015 418.6.4 C= #REF!
Req per Stirrups Spacing
Seismic Qty mm (unit) fs #REF!
50.00 1.00 50.00 Pass! First Stirrups Min of 50mm from Face of Support
0.85 0.81
96.00 9.00 90.00 Fail!

196.00 Rest 150.00 Pass!

1
0 FALSE
0 FALSE
0 #N/A Ø= 0.65

0.8835132

0.9

50.00
96.00
196.00
196
196.0
388.0
at
Must not Exceed

0.05 ⅓ √f'c bw d d/2


149.70 196

2
with 2
with 2- extra
with 2- extra
b₁ = 0.9

0.65

0.8835132

0.9
o.c.

d/4
98

- extra

You might also like