0% found this document useful (0 votes)
37 views9 pages

ST-Ar Galan

Uploaded by

Rocky Siores
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
37 views9 pages

ST-Ar Galan

Uploaded by

Rocky Siores
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

REINFORCED CONCRETE BEAM

FB - 1
Input Parameters :
Sup Mid
Standard Specs Moment Capacity Top Bot Shear Capacity
fc' = 21 Mpa Tension Bar, Dt = 3 3 bw = 250 mm fyt = 230
fy = 275 Mpa Tension Bar 2-L, Nb = 3 3 h = 400 mm Av = 2
b₁ = .85 Compression Bar, Dc = 3 3 Sb = 10 mm Stirrups Bar Ø
Es = 200 Gpa Main Bar dia, D = 16 Cc = 40 mm, Clear Covering
Moment, Mu = 76.0 65.0
CONDITION : Val = 0.65+0.25 (Ԑt - Ԑty/0.005 - Ԑty)
Ø = 0.65 , Ԑt ≤ Ԑty 3-16mmØ S
Val , Ԑty ˂ Ԑt ˂ 0.005 3-16mmØ U
0.90 , Ԑt ≥ 0.005
P
Location of d' & dt; Support Midspan T
As1 = π D² Db /4 = 603.19 603.19 P
2L, As2 = π D² Nb /4 = 603.19 603.19 O
y = (As1 y1 +As2 y 2 )/As = 30.00 30.00 3-16mmØ R
d' = Cc + Sb + (D/2) + y = 88.00 88.00
dt = h - d' = 312.00 312.00
CHECKING : εt ≥ 0.004, Support Midspan
Cmax = 600 d t / fsmin +600 = 133.7 133.71 M
amax = β1 Cmax = 113.7 113.66 3-16mmØ
I
Asmax = 0.85f'c a max b w / fy = 1844.35 1844.35
a = (As fy- As' fy)/0.85 fc' b = 74.34 74.34 D
C= a/β1 = 87.46 87.46 S
fs' = 600 (C-d')/C = -3.69 -3.69
P
fs' = Compression Bars = Not Yield Not Yield 3-16mmØ
600 (dt-C)/C 3-16mmØ
A
fs = = 1540.37 1540.37
fs = Tension Bars = Yield Yield N
BEAM MOMENT CAPACITY; Ø = 0.9 CHECK SHEAR; Ø = 0.75
As fy = 0.85fc' β1 C bw + As' fs'; Where, fs' = (600 C-d'/C) Vc = 0.17 √fc' bw dt = 61 < 75.00
Support Midspan Vsmax = 0.67 √fc' bw dt = 239 KN
C= by quadratic = 87.74 87.74 Vs = (Vu/Ø ) - Vc = 39.24 < 239.49
a= β1 C = 74.58 74.58 Section is Adequate
fs' = 600 (C-d')/C = -1.81 -1.81 Av = 2 (π Sb²/4)= 157.1
fs = 600 (dt-C)/C = 1533.67 1533.67 Vs ≤ 0.33√f'c bw d, d/2
Max S, w/c
Mn = Cc[d t -(a/2)] + Cs (d t -d') = 91.18 91.18 or 600mm otherwise
ever is
SUPPORT, ØMn = 82.06 > 76.00 Pass! Vs > 0.33√f'c bw d,
lesser,mm
MIDSPAN, ØMn = 82.06 > 65.00 Pass! d/4 or 300mm

Therefore use 250x400with 8-16mmØ @ support and 8-16mmØ @ midspan Main Bars (Grade 40);
10mmØ 2 leg-stirrups: Sp. at 4@50, 4@70 and rest 200 O.C
REINFORCED CONCRETE BEAM
FB - 2
Input Parameters :
Sup Mid
Standard Specs Moment Capacity Top Bot Shear Capacity
fc' = 21 Mpa Tension Bar, Dt = 3 3 bw = 200 mm fyt = 230
fy = 275 Mpa Tension Bar 2-L, Nb = 2 2 h = 400 mm Av = 2
b₁ = .85 Compression Bar, Dc = 3 3 Sb = 10 mm Stirrups Bar Ø
Es = 200 Gpa Main Bar dia, D = 16 Cc = 40 mm, Clear Covering
Moment, Mu = 67.0 62.0
CONDITION : Val = 0.65+0.25 (Ԑt - Ԑty/0.005 - Ԑty)
Ø = 0.65 , Ԑt ≤ Ԑty 3-16mmØ S
Val , Ԑty ˂ Ԑt ˂ 0.005 2-16mmØ U
0.90 , Ԑt ≥ 0.005
P
Location of d' & dt; Support Midspan T
As1 = π D² Db /4 = 603.19 603.19 P
2L, As2 = π D² Nb /4 = 402.12 402.12 O
y = (As1 y1 +As2 y 2 )/As = 24.00 24.00 3-16mmØ R
d' = Cc + Sb + (D/2) + y = 82.00 82.00
dt = h - d' = 318.00 318.00
CHECKING : εt ≥ 0.004, Support Midspan
Cmax = 600 d t / fsmin +600 = 136.3 136.29 M
amax = β1 Cmax = 115.8 115.84 3-16mmØ
I
Asmax = 0.85f'c a max b w / fy = 1503.85 1503.85
a = (As fy- As' fy)/0.85 fc' b = 77.44 77.44 D
C= a/β1 = 91.11 91.11 S
fs' = 600 (C-d')/C = 59.97 59.97
P
fs' = Compression Bars = Not Yield Not Yield 2-16mmØ
600 (dt-C)/C 3-16mmØ
A
fs = = 1494.27 1494.27
fs = Tension Bars = Yield Yield N
BEAM MOMENT CAPACITY; Ø = 0.9 CHECK SHEAR; Ø = 0.75
As fy = 0.85fc' β1 C bw + As' fs'; Where, fs' = (600 C-d'/C) Vc = 0.17 √fc' bw dt = 50 < 75.00
Support Midspan Vsmax = 0.67 √fc' bw dt = 195 KN
C= by quadratic = 85.75 85.75 Vs = (Vu/Ø ) - Vc = 50.45 < 195.27
a= β1 C = 72.88 72.88 Section is Adequate
fs' = 600 (C-d')/C = 26.22 26.22 Av = 2 (π Sb²/4)= 157.1
fs = 600 (dt-C)/C = 1625.15 1625.15 Vs ≤ 0.33√f'c bw d, d/2
Max S, w/c
Mn = Cc[d t -(a/2)] + Cs (d t -d') = 76.99 76.99 or 600mm otherwise
ever is
SUPPORT, ØMn = 69.29 > 67.00 Pass! Vs > 0.33√f'c bw d,
lesser,mm
MIDSPAN, ØMn = 69.29 > 62.00 Pass! d/4 or 300mm

Therefore use 200x400with 7-16mmØ @ support and 7-16mmØ @ midspan Main Bars (Grade 40);
10mmØ 2 leg-stirrups: Sp. at 4@50, 4@70 and rest 200 O.C
REINFORCED CONCRETE BEAM
CB - 1
Input Parameters :
Sup Mid
Standard Specs Moment Capacity Top Bot Shear Capacity
fc' = 21 Mpa Tension Bar, Dt = 4 2 bw = 200 mm fyt = 230
fy = 275 Mpa Tension Bar 2-L, Nb = 2 1 h = 350 mm Av = 2
b₁ = .85 Compression Bar, Dc = 2 6 Sb = 10 mm Stirrups Bar Ø
Es = 200 Gpa Main Bar dia, D = 16 Cc = 40 mm, Clear Covering
Moment, Mu = 54.0 36.0
CONDITION : Val = 0.65+0.25 (Ԑt - Ԑty/0.005 - Ԑty)
Ø = 0.65 , Ԑt ≤ Ԑty 4-16mmØ S
Val , Ԑty ˂ Ԑt ˂ 0.005 2-16mmØ U
0.90 , Ԑt ≥ 0.005
P
Location of d' & dt; Support Midspan T
As1 = π D² Db /4 = 804.25 402.12 P
2L, As2 = π D² Nb /4 = 402.12 201.06 O
y = (As1 y 1 +As2 y 2 )/As = 20.00 20.00 2-16mmØ R
d' = Cc + Sb + (D/2) + y = 78.00 78.00
dt = h - d' = 272.00 272.00
CHECKING : εt ≥ 0.004, Support Midspan
Cmax = 600 d t / fsmin +600 = 116.6 116.57 M
amax = β1 Cmax = 99.1 99.09 6-16mmØ
I
Asmax = 0.85f'c a max b w / fy = 1286.31 1286.31
a = (As fy- As' fy)/0.85 fc' b = 92.93 46.46 D
C= a/β1 = 109.33 54.66 S
fs' = 600 (C-d')/C = 171.93 -256.15
P
fs' = Compression Bars = Not Yield Not Yield 1-16mmØ
600 (dt-C)/C 2-16mmØ
A
fs = = 892.77 2385.54
fs = Tension Bars = Yield Yield N
BEAM MOMENT CAPACITY; Ø = 0.9 CHECK SHEAR; Ø = 0.75
As fy = 0.85fc' β1 C bw + As' fs'; Where, fs' = (600 C-d'/C) Vc = 0.17 √fc' bw dt = 42 < 75.00
Support Midspan Vsmax = 0.67 √fc' bw dt = 167 KN
C= by quadratic = 95.11 72.54 Vs = (Vu/Ø ) - Vc = 57.62 < 167.03
a= β1 C = 80.85 61.66 Section is Adequate
fs' = 600 (C-d')/C = 107.95 -45.20 Av = 2 (π Sb²/4)= 157.1
fs = 600 (dt-C)/C = 1115.87 1649.92 Vs ≤ 0.33√f'c bw d, d/2
Max S, w/c
Mn = Cc[d t -(a/2)] + Cs (d t -d') = 75.26 42.51 or 600mm otherwise
ever is
SUPPORT, ØMn = 67.73 > 54.00 Pass! Vs > 0.33√f'c bw d,
lesser,mm
MIDSPAN, ØMn = 38.26 > 36.00 Pass! d/4 or 300mm

Therefore use 200x350with 8-16mmØ @ support and 5-16mmØ @ midspan Main Bars (Grade 40);
10mmØ 2 leg-stirrups: Sp. at 4@50, 4@60 and rest 150 O.C
REINFORCED CONCRETE DESIGN FOR SLAB
S-1 One-way slab

Input Parameters :

f'c = 21 Mpa dᵇ = 10 mm Sup Mid Temp bar


fy = 230 Mpa t= 100 mm Sᵇ = 200 200 300 mm
b₁ = 0.85 Ln = 1.2 m
Es = 200 Gpa L1 = 2.2 m
L2 = 2.2 m

Analysis :

Deadload, D = 5.21 KN/m


Liveload, L = 2.9 KN/m
Wᵤ = 1.2D + 1.6L = 10.89 KN/m
Support, Mᵤ = Wu Ln²/10 = 5.27 KN-m
Midspan, Mᵤ = Wu Ln²/14 = 1.12 KN-m
Check Moment and Shear Capacity b= 1 m
Aᵇ = π dᵇ / 4 = 78.54 mm² Asmin = 200 mm²
Support Midspan
As = Aᵇ b / Sᵇ = 392.70 mm² 392.70 mm²
a = As fy / 0.85 fc' b = 5.06 mm 5.06 mm
C = a / β1 = 5.95 mm 5.95 mm
d = t - (20 + dᵇ/2) = 75.00 mm 75.00 mm
Ԑᵧ =fy / Es= 0.00115
Ԑs=0.003 ((d-c)/c) = 0.0348 > 0.005 Tension Control
Thus use, Ø = 0.90 Support Midspan
Mn=0.85 fc' ab (d-a/2) = 6.55 KNm 6.55 KNm
Support, Ø Mn = 5.89 KNm > 5.27 Pass!
Midspan, Ø Mn = 5.89 KNm > 1.12 Pass!
Ø = 0.75
Vᵤ = 1.15*Wu Ln/2 = 7.52 KN
Ø Vc = Ø 0.17 (√fc' bd) = 43.82 KN Pass!
Check Thickness = Ln / 24 < 100 mm Pass!

Therefore use, 100mm thick slab with 10mmØ Grade (33) rebar spaced @
200mm at support, top bars / 200mm at midspan, bottom bars / 300mm Temp bars O.C
REINFORCED CONCRETE DESIGN FOR SLAB
S-2 Two-way Slab

Input Parameters :

f'c = 21 Mpa dᵇ = 10 mm², Bar Ø Long Short


fy = 230 Mpa t= 125 mm Bar Ø Sup Mid Sup Mid
b₁ = .85 Top, (-) 200 200
Es = 200 Gpa LA = 3 m, Short Bot, (+) 200 200
ʯᶜ = 23.6 KN/mᶟ LB = 4.5 m, Long

Deadload, D = 4.25 KN/m


Liveload, L = 3.8 KN/m
Analysis :
1.2 D = Du = 5.1 KN/m
1.6 L = Lu = 6.08 KN/m
Wᵤ = 1.2D + 1.6L = 11.2 KN/m
m = LA/LB = 0.65
Moment Coefficients: ACI 318-63 Code Case 2
Ca, neg = 0.077 Cb, neg = 0.01
CaL = 0.053 CbL = 0.01
CaD = 0.032 CbD = 0.006

Moment along Long span Moment along Short span

Ma = Ca Wu LB = 3.17 KNm - Support - Mb = Cb Wu LB = 7.75


Ma = Ca Wu LB = 1.85 KNm - Midspan - Mb = Cb Wu LB = 4.37
Aᵇ =π dᵇ/ 4 = 78.54 mm²
Check Moment and Shear Capacity; b= 1 m strip
Long span Short Span
Sup, As= Aᵇb/ Sᵇ= 392.70 mm² As = Aᵇb/ Sᵇ = 392.70 mm²
Mid, As= Aᵇb/ Sᵇ= 392.70 mm² As = Aᵇb/ Sᵇ = 392.7 mm²
LONG SPAN SHORT SPAN
Top a = As fy/ 0.85 fc' b = 5.06 5.06 mm
Bot a = As fy/ 0.85 fc' b = 5.06 5.06 mm
Top c= a / b₁ = 5.95 5.95 mm
Bot c= a / b₁ = 5.95 5.95 mm
d= t -(20 + dᵇ/2) = 100.00
Ԑᵧ = fy / Es = 0.00115
Ԑs= 0.003[(d-c)/c] = 0.0474 > 0.005 Tension Control
Thus, Use = 0.90
Long Span Short Span
Sup, Mn = 0.85 fc' ab(d-(a/2)) = 8.80 > 3.17 Pass! 8.80 > 7.75 Pass! KNm
Mid, Mn = 0.85 fc' ab(d-(a/2)) = 8.80 > 1.85 Pass! 8.80 > 4.37 Pass! KNm
Minimum Thickness, t = LB / 36 < 125 Pass!

Therefore use, 125mmthick slab with 10mmØ rebar (Grade33)


spaced; along short span top/bot - 200/200: long span 200/200 o.c.
REINFORCED CONCRETE COLUMN
C-1
Design Parameters:
Main Bars Loc -Z Ast
h= 400 mm d' = 40 mm fs 1 = 3 - 360.00 603.19
b= 250 mm Main bars = 16 mm Ø fs 2 = 0 - 280.00 0
fc' = 21 Mpa Mux = 43 KNm fs 3 = 2 - 200.00 402.12
fy = 275 Mpa Pu = 512 KN fs 4 = 0 - 120.00 0
b₁ = 0.85 Es con = 600 Mpa fs5 = 3 - 40.00 603.19
Es = 200 Gpa Shear parameters
Defining Condition; Nvh = 3 , lateral ties leg
0.65 , Ԑt ≤ Ԑty if fs > fy, use fy Nvb = 3 , lateral ties leg
Ø = Val , Ԑty ˂ Ԑt ˂ 0.005 fyt = 230 Mpa, lateral ties
0.90 , Ԑt ≥ 0.005 Ties, Td = 10 mm Ø
Val = 0.65+0.25 (Ԑt-Ԑty/0.005 - Ԑty)
MAXIMUM AXIAL CAPACITY Ag = 100000 NSCP 422.4.2.2
Pcn = 0.8 [0.85 fc' (Ag-As) + fy As] = 1,758.90 kN
Ø= 0.7 , Pcu = Ø Pcn = 1,143.28 kN
BALANCE CONDITION CAPACITY, Ø = 0.65 COMPRESSION CONTROLLED CAPACITY, Ø = .65
Ԑy = fy / Es = 0.00138 Ԑt = -0.002
Cb = Ԑc d/Ԑc + Ԑy = 246.86 mm Ct = Es con d/(Es con-Es Ԑt) = 216.00 mm
ab = β C = 209.83 mm at = β C = 183.60 mm
from strain diagram As[fy or fs] from strain diagram As[fy or fs]
fs 1 = 600(d-C)/C = 275.00 T1 = 165.88 KN, Tension fs 1 = 600(d-C)/C = 400.00 T1 = 165.88 KN, T
fs 2 = 600(C-Z 2 )/C = 0.00 C2 = 0.00 KN, fs 2 = 600(C-Z 2 )/C = 0.00 C2 = 0.00 KN,
fs 3 = 600(C-Z 3 )/C = 113.89 C3 = 45.80 KN, Compression fs 3 = 600(C-Z 3 )/C = 44.44 C3 = 17.87 KN, C
fs 4 = 600(C-Z 4 )/C = 0.00 C4 = 0.00 KN, fs 4 = 600(C-Z 4 )/C = 0.00 C4 = 0.00 KN,
fs 5 = 600(C-Z 5 )/C = 502.78 C5 = 165.88 KN, Compression fs 5 = 600(C-Z 5 )/C = 488.89 C5 = 165.88 KN, C
Cc = .85 f'c ab = 936.36 KN Cc = .85 f'c ab = 819.315 KN
[∑Fv = 0], Pbn =C2+C3+C4+C5+Cc - T = 982.2 KN [∑Fv = 0], Pbn =C2+C3+C4+C5+Cc - T = 837.2 KN
[∑M T = 0], find e = x-z, z= 160.00 mm [∑M T = 0], find e = x-z, z= 160 mm
P bnX = C 2 X 2+C 3 X 3 +C 4 X 4+C 5 X 5+C c X c PbnX = C 2 X 2 +C 3 X 3+C 4 X 4+C 5 X 5 +C c X c
eb = 144.70 mm ØPb = 638.4 KN et = 102.47 mm ØPt = 544.17 KN
Mb = 142.11 KNm ØMb = 92.37 KNm M t = 55.76 KNm ØMt = 36.25 KNm
ECCENTRICALLY LOADED SECTION CAPACITY, Ø= 0.65 CHECK SHEAR, Øv = 0.75
due to applied load, ex = 83.98 Vc = 0.17[1+(Pu/14Ag)] √fc' b dt = 95.75 89.37 KN
[∑Fv = 0], Pbn =C2+C3+C4+C5+Cc -T Av = π Td² Nv / 4 = 235.6 235.6 mm²
[∑MT = 0], PbnX =C2X2+C3X3+C4X4+C5X5+CcXc Smax, min (16db, 48dties and least col dimension)
C = 311.26 mm a = 264.57 mm 16 db = 256 mm
fs 1 = 600(d-C)/C = 93.95 T1 = 56.67 KN, Tension 48 dties = 480 mm
fs 2 = 600(C-Z 2 )/C = 0.00 C2 = 0.00 KN, Least Column dimension = 250 mm
fs 3 = 600(C-Z 3 )/C = 214.47 C3 = 86.24 KN, Compression
fs 4 = 600(C-Z 4 )/C = 0.00 C4 = 0.00 KN,
fs 5 = 600(C-Z 5 )/C = 522.89 C5 = 165.88 KN, Compression
Cc = .85 f'c ab = 1180.65
Pnx = 1376.10 ØPn = 894.46 KN > 512.00 Pass!
Mnx = 115.57 ØMn = 75.12 KNm > 43.00 Pass!

Therefore use, 400x250mm 8-16mm Ø longitudinal bars (GRADE 40) with 10mm Ø lateral ties space at,
1@50, 8@60mm , and Rest 100mm O.C, BOTH ENDS.
3 - 16mm Ø b

3 - 16mm Ø
h
FORCE TRANSFER GUIDE FROM STAAD RESULT OR EQUIVALENT SOFTWARE
Mz (Staad) = Mux = 43 < 75.12 Pass! , ex =83.98 mm
My (Staad) = Muy = 32 < 34.41 Pass! , ey =62.5 mm
ØPnx = 894.46 > 512 Pass! > 894.5
ØPny = 550.53 > 512 Pass! < 550.5
, ex = 84.0
Col Height, H = 3 Floor to Beam Bottom , ey = 62.5
Length factor, K = 0.5 Refer (Sheet 2) 34.4
<
Column Slenderness (Unbraced Column, KL/r ≤ 22), 406.2.5
KL/rx = 12.5 < 22 Ok! 12.50
KL/ry = 20 < 22 Ok! 20.00
75.1
Dimension Limits, 418.7.2.1
250 mm 250 Ok!
Ratio Limit 0.4 0.63 Ok!

Main reinforcement Ratio Ast = 1608.5


0.01Ag < Ast > 0.06Ag Ok!
1000
Traverse Reinforcements, 418.7.5.4 #######
No of Leg Req, h = 3 Ok!
No of Leg Req, b = 2 Ok!
ISOLATED RECTANGULAR FOOTING DESIGN
F-1
Input Parameters:
Concrete Strenght, fc' = 21 Mpa Longitudinal Bar, Ax = 9
16 mmØ
Rebar yield strength, fy = 230 Mpa Traverse Bar, Ay = 9
Net allowable Soil Pressure, qa = 180 kPa Loc X - dir dx = 0 m, 0 from center
Footing Embedment Depth, Df = 1.5 m Loc Y - dir dy = 0 m, 0 from center
Surcharge, qs = 3.5 kPa Depth, Cx = 0.4 m
Soil Weight, ws = 16 kN/m³ Width, Cy = 0.2 m
Footing Thickness, t= 0.3 m Load, Pd = 87 KN
Length, L= 1.5 m Load, Pl = 143 KN
Width, B= 1.5 m Moment X, Mx = 18 KNm
Clear Covering, c= 75 mm Moment Y, My = 17 KNm
Check Soil Bearing Capacity

Applied Load, Pd + Pl = 230.00


Surcharge, qs (LB) = 7.88
Weigth Footing, (23.5-ws) tBL= 5.06
Pn = 242.94 kN
Mx = -18 KNm My = -17 KNm
ex = -0.078 m L/6 = 0.250 m
ey = -0.074 m B/6 = 0.25 m
P 6M < 180.00
qnx(max) = + = 139.97
BL L²B Pass!
P 6M < 180.00
qny(max) = + = 138.19
BL B²L Pass!

Check Thickness ; Two-way Shear Check One-way Shear; must, Vc > Vu

Applied Load, 1.2Pd + 1.6Pl = 333.20 Vux = qu B[(B-C)/2)-d] = 66.63 KN


Surcharge, 1.2 qs (LB) = 9.45 Vuy = qu L[(L-C)/2)-d] = 88.41 KN
Weigth Footing, 1.2(23.5-ws) tLB = 6.08 ØVcx = Ø 0.17 √fc' B d = 183.17 KN Pass!
Pu = 348.73 ØVcy = Ø 0.17 √fc' L d = 183.17 KN Pass!
Mx = -18 My = -17
ex = -0.05 ey = -0.05 Check Flexural Reinforcement; Asmin = 0.002Bt
L/6 = 0.25 L/6 = 0.25
qumaxx = 186.989 qumaxy = 185.211 Kpa Mux = 29.68 KNm Muy = 42.30 KNm

d = 0.209 m Asx = 1809.56 mm² Asy = 1809.56 mm²


Vux = qu (BL-(Cx+d)(Cy+d)) = 310.12 KN Asmx = 900.00 Asmy = 900.00 mm²
Vuy = qu (BL-(Cx+d)(Cy+d)) = 310.12 KN
bo = 2(D1 + d) 2(W1 + d) = 2.036 m Sx = 150.8 Sy = 150.8 mm (Smax=450mm)
Ø Vc 1 = Ø 0.33 √fc' bo d = 482.624 KN Asx fy
ax = = 15.54 mm, ay= 15.54 mm
bc = Long/short side of column = 2 .85 fc B

Ø Vc 2 = Ø( 1 + 2 ).17 √f'c bo d = 497.2 KN Check Tension Contolled Limit Ø= 0.9


βc ab/d = 0.614 > ax/d & ay/d
αs = 40 ax/d = 0.074 ay/d = 0.074

Ø Vc 2 = Ø(2+ αs d ) .083 √f'c bo d = 750.17


βc ax ay
ØMnx = ØAsx fy(d- ) ØMny = ØAsy fy(d- )
2 2

ØMnx = 75.38 KNm, ØMny = 75.38 KNm


Ø Vc = min Ø Vc1 ,Ø Vc2,Ø Vc3 482.6 > 310
Pass! > Mu Pass! > Mu Pass!

Therefore use, 1.5x1.5x0.3m thick Footing with 16mmØ Tension Bar Grade (33) sp. @ 150.75mm and 150mm 3
along BL respectively O.C.
3
PROPOSED ONE STOREY WITH DECK
STRUCTURAL ANALYSIS

Owner

DESIGNED BY:

ROCKY M. SIORES
Civil Engineer

PRC Reg. No. 0111516


PTR No. 1925073
TIN No. 408-875-292
Issued on: January 08, 2024
Issued at: Puerto Princesa City

You might also like