Afe 7950
Afe 7950
AFE7950 4T6R RF Sampling AFE with 12 GSPS DACs and 3 GSPS ADCs
The TX signal paths support interpolation and digital
1 Features up conversion options that deliver up to 1200 MHz
• Request full data sheet of signal bandwidth for four TX or 2400 MHz for two
• Quad RF sampling 12-GSPS transmit DACs TX. The output of the DUCs drives a 12-GSPS DAC
• Quad RF sampling 3-GSPS receive ADCs (digital to analog converter) with a mixed mode output
• Dual RF sampling 3-GSPS feedback (auxilliary option to enhance 2nd Nyquist operation. The DAC
RX) ADCs output includes a variable gain amplifier (TX DSA)
• Maximum RF signal bandwidth: with 40-dB range and 1-dB analog and 0.125-dB
– 4TX or 2FB: 1200 MHz or 2TX: 2400 MHz digital steps.
– RX): 1200 MHz (no FB), 600 MHz (with FB) Package Information
• RF frequency range:
PART NUMBER PACKAGE(1) PACKAGE SIZE(2)
– TX: 600MHz - 12GHz
AFE7950 FC-BGA 17 mm × 17 mm
– RX/FB: 600MHz -12GHz
• Digital step attenuators (DSA): (1) For more information, see Mechanical, Packaging, and
– TX: 40 dB range, 0.125-dB steps Orderable Information.
(2) The package size (length × width) is a nominal value and
– RX or FB: 25 dB range, 0.5-dB steps includes pins, where applicable.
• Single or dual-band DUC or DDCs for TX and RX
• 16x NCOs per TX or RX and FB
• Optional Internal PLL or VCO for DAC or ADC
clocks or external clock at DAC or ADC sample
rate
• SerDes data interface:
– JESD204B and JESD204C compatible
– 8 SerDes transceivers up to 29.5 Gbps
– Subclass 1 multi-device synchronization
• Package: 17-mm × 17-mm FCBGA, 0.8-mm pitch
2 Applications
• Radar
• Seeker front end
• Defense radio
• Tactical communications infrastructure
• Wireless communications test
3 Description
The AFE7950 is a high performance, wide
bandwidth multi-channel transceiver, integrating four
RF sampling transmitter chains, four RF sampling
receiver chains and two RF sampling feedback chains
(six RF sampling ADCs total). With operation up to
12 GHz, this device enables direct RF sampling in
the L, S, C and X-band frequency ranges without
the need for additional frequency conversions stages.
This improvement in density and flexibility enables
high-channel-count, multi-mission systems.
Functional Block Diagram
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
AFE7950
SBASA41D – FEBRUARY 2021 – REVISED JUNE 2023 www.ti.com
Table of Contents
1 Features............................................................................1 6.8 Digital Electrical Characteristics................................19
2 Applications..................................................................... 1 6.9 Power Supply Electrical Characteristics................... 20
3 Description.......................................................................1 6.10 Timing Requirements.............................................. 26
4 Description (continued).................................................. 3 6.11 Switching Characteristics........................................ 27
5 Revision History.............................................................. 3 6.12 Typical Characteristics............................................ 28
6 Specifications.................................................................. 4 7 Device and Documentation Support..........................125
6.1 Absolute Maximum Ratings........................................ 4 7.1 Receiving Notification of Documentation Updates..125
6.2 ESD Ratings............................................................... 4 7.2 Support Resources................................................. 125
6.3 Recommended Operating Conditions.........................5 7.3 Trademarks............................................................. 125
6.4 Thermal Information....................................................5 7.4 Electrostatic Discharge Caution..............................125
6.5 Transmitter Electrical Characteristics..........................6 7.5 Glossary..................................................................125
6.6 RF ADC Electrical Characteristics............................ 13 8 Mechanical, Packaging, and Orderable Information 125
6.7 PLL/VCO/Clock Electrical Characteristics................ 17
4 Description (continued)
Each receiver chain includes a 25-dB range DSA (Digital Step Attenuator), followed by a 3-GSPS ADC (analog-
to-digital converter). Each receiver channel has an analog peak power detector and various digital power
detectors to assist an external or internal autonomous automatic gain controller, and RF overload detectors for
device reliability protection. Flexible decimation options provide optimization of data bandwidth up to 1200 MHz
for four RX without FB paths or 600 MHz with two FB paths (1200 MHz BW each).
5 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from July 12, 2022 to June 12, 2023 (from Revision C (July 2022) to Revision D (June
2023)) Page
• Changed the Packaging Information table to include note 2.............................................................................. 1
• Changed IIH and IIL units to µA......................................................................................................................... 19
• Removed dither from conditions....................................................................................................................... 28
• Changed captions to read 1.8 GHz in 1.8 GHz section and removed dither from conditions...........................36
• Removed dither from conditions....................................................................................................................... 42
• Changed 0TX to 1TX in plot notes and removed dither from conditions and dither plot.................................. 50
• Removed dither from conditions....................................................................................................................... 55
• Changed 0TX - 3TX to 1TX - 4TX in plot legends............................................................................................ 63
• Removed TX dither plot and TX dither in conditions........................................................................................ 63
• Removed dither from conditions....................................................................................................................... 73
• Changed 0RX - 3RX to 1RX - 4RX in plot captions and notes.......................................................................100
Changes from March 9, 2022 to July 12, 2022 (from Revision B (March 2022) to Revision C
(July 2022)) Page
• Removed dither from conditions....................................................................................................................... 28
• Changed captions to read 1.8 GHz in 1.8 GHz section and removed dither from conditions...........................36
• Removed dither from conditions....................................................................................................................... 42
• Changed 0TX to 1TX in plot notes and removed dither from conditions and dither plot.................................. 50
• Removed dither from conditions....................................................................................................................... 55
• Changed 0TX - 3TX to 1TX - 4TX in plot legends............................................................................................ 63
• Removed TX dither plot and TX dither in conditions........................................................................................ 63
• Removed dither from conditions....................................................................................................................... 73
• Changed 0RX - 3RX to 1RX - 4RX in plot captions and notes.......................................................................100
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
DVDD0P9, VDDT0P9 –0.3 1.2 V
VDD1P2RX, VDD1P2TXCLK, VDD1P2TXENC, VDD1P2PLL,
VDD1P2PLLCLKREF, VDD1P2FB, VDD1P2FBCML, –0.3 1.4 V
Supply Voltage
VDD1P2RXCML
Range
VDD1P8RX, VDD1P8RXCLK, VDD1P8TX, VDD1P8TXDAC,
VDD1P8TXENC, VDD1P8PLL, VDD1P8PLLVCO, VDD1P8FB, –0.5 2.1 V
VDD1P8FBCLK, VDD1P8GPIO, VDDA1P8
{1/2/3/4}RXIN+/- –0.5 VDDRX1P8+0.3 V
1FBIN+/-, 2FB+/- –0.5 VDDFB1P8+0.3 V
{1/2/3/4}TXOUT+/- –0.5 VDDTX1P8+0.3 V
REFCLK+/-, SYSREF+/- –0.3 1.4 V
{1:8}SRX+/- –0.3 1.4 V
Pin Volatge
Range {1:8}STX+/- –0.3 1.4 V
GPIO{B/C/D/E}x, SPICLK, SPISDIO, SPISDO, SPISEN, RESETZ, VDD1P8GPIO +
–0.5 V
BISTB0, BISTB1 0.3
VDDCLK1P8 +
IFORCE, VSENSE –0.3 V
0.3
SRDAMUX1, SRDAMUX2 –0.3 VDDA1P8+0.3 V
Peak Input
any input 20 mA
Current
TJ Junction temperature 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(1) Prolonged use at or above this junction temperature can increase the device failure-in-time (FIT) rate. Refer to SBAA403 application
note for additional details
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
3rd Order Intermodulation distortion, 2 fout = 9600MHz, -7dBFS each tone -52 dBc
IMD3
tones at fIF±10 MHz fout = 850MHz, -13dBFS each tone -74.4 dBc
fout = 1800MHz, -13dBFS each tone -71.1 dBc
fout = 2600MHz, -13dBFS each tone -73 dBc
fout = 3500MHz, -13dBFS each tone -72 dBc
fout = 4900MHz, -13dBFS each tone -67.8 dBc
fout = 8100MHz, -13dBFS each tone -64 dBc
fout = 9600MHz, -13dBFS each tone -68 dBc
fout = 850 MHz 50.8 dBc
fout = 1800 MHz 51.9 dBc
Spurious Free Dynamic Range (within
SFDR fout = 2600 MHz 42 dBc
Nyquist zone)
fout = 3500 MHz 44 dBc
fout= 4900 MHz 46.1 dBc
fDAC = 5898.24MSPS, interleave mode -51.9 dBc
fDAC = 8847.36 MSPS, interleave
-46.0 dBc
fS/2 - fOUT Interleaving Image mode
fDAC = 11796.48MSPS, interleave
-41 dBc
mode
fout = 850 MHz -49 dBc
fout = 1800 MHz -53 dBc
fout = 2600 MHz -50 dBc
fout = 3500 MHz -48 dBc
fout= 4900 MHz -47 dBc
fout= 8100 MHz -50 dBc
(1) Measured with differential 50 ohm across TxP/M. The DC bias to 1.8V to each TxP/M at each pin remains and is not removed. Other
external components on the TX paths are disconnected.
(2) After DSA calibration procedure
(3) Single side band, input clock phase noise subtracted.
(1) The input fullscale at minimum attenuation can be reduce by adding a digital gain range to the DSA, extending the useful range of the
DSA. The noise figure remains constant over the digital gain range.
(2) NLE correction of HD2
(3) From DSA = 3dB down to 0dB, NSD increases 1dB per DSA dB
(4) NF increase 1dB per DSA 1dB above DSA = 3dB
(1) SDEN\\ need to be held one more extra clock cycle with the last SCLK edge
(1) Interface clock cycles is the period of the digital interface sample rate, e.g. 1GSPS = 1ns.
6 6
5 5.5
Output Full Scale (dBm)
3 4.5
2 4
0.02
-10 0.01
-15 0
-20 -0.01
-0.02
-25 1TX
-0.03 2TX
-30 -0.04 3TX
4TX
-35 -0.05
0 5 10 15 20 25 30 35 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 11796.48 MSPS, interleave mode, Aout = -0.5dFBS, fDAC=5898.24MSPS, interleave mode, matching at 0.8 GHz
matching 0.8 GHz Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
. Setting) + 1
Figure 6-3. TX Output Power vs DSA Setting and Channel at Figure 6-4. TX Uncalibrated Differential Gain Error vs DSA
0.85 GHz Setting and Channel at 0.85 GHz
0.05 0.35
1TX
Uncalibrated Integrated Gain Error (dB)
Calibrated Differential Gain Error (dB)
0.01
0.2
0
0.15
-0.01
-0.02 0.1
1TX
-0.03 2TX
0.05 3TX
-0.04
4TX
-0.05 0
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC=5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC=5898.24MSPS, interleave mode, matching at 0.8 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Integrated Gain Error = POUT(DSA Setting ) – POUT(DSA
Setting) + 1 Setting = 0) + DSA Settings
Figure 6-5. TX Calibrated Differential Gain Error vs DSA Setting Figure 6-6. TX Uncalibrated Integrated Gain Error vs DSA
and Channel at 0.85 GHz Setting and Channel at 0.85 GHz
2TX 0.04
0.08 3TX 0.03
4TX
0.02
0.06
0.01
0.04 0
-0.01
0.02
-0.02
-0.03 -40 qC
0
-0.04 25 qC
105 qC
-0.02 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC=5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz
Integrated Gain Error = POUT(DSA Setting ) – POUT(DSA Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting = 0) + DSA Setting Setting) + 1
Figure 6-7. TX Calibrated Integrated Gain Error vs DSA Setting Figure 6-8. TX Uncalibrated Differential Gain Error vs DSA
and Channel at 0.85 GHz Setting and Temperature at 0.85 GHz
0.03 0.5
-40 qC
Uncalibrated Integrated Gain Error (dB)
Calibrated Differential Gain Error (dB)
0.45
0.02 25 qC
0.4 105 qC
0.01 0.35
0 0.3
0.25
-0.01
0.2
-0.02 0.15
-0.03 0.1
-40 qC 0.05
-0.04 25 qC
0
105 qC
-0.05 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Integrated Gain Error = POUT(DSA Setting ) – POUT(DSA
Setting) + 1 Setting = 0) + DSA Setting
Figure 6-9. TX Calibrated Differential Gain Error vs DSA Setting Figure 6-10. TX Uncalibrated Integrated Gain Error vs DSA
and Temperature at 0.85 GHz Setting and Temperature at 0.85 GHz
0.1 0.02
Uncalibrated Differential Phase Error (deg)
-40 qC
Calibrated Integrated Gain Error (dB)
0.08 25 qC
105 qC
0.01
0.06
0.04
0
0.02
0
-0.01 1TX
2TX
-0.02 3TX
4TX
-0.04 -0.02
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz
Integrated Gain Error = POUT(DSA Setting ) – POUT(DSA Differential Phase Error = PhaseOUT(DSA Setting – 1) –
Setting = 0) + DSA Setting PhaseOUT(DSA Setting)
Figure 6-11. TX Calibrated Integrated Gain Error vs DSA Setting Figure 6-12. TX Uncalibrated Differential Phase Error vs DSA
and Temperature at 0.85 GHz Setting and Channel at 0.85 GHz
0.2
0.15
0.15
0.1
0.05
0 0.1
-0.05
-0.1
0.05
-0.15
-0.2 1TX 3TX 1TX 3TX
2TX 4TX 2TX 4TX
-0.25 0
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Integrated Phase Error = PhaseOUT(DSA Setting) –
PhaseOUT(DSA Setting) PhaseOUT(DSA Setting = 0)
Phase DNL spike may occur at any DSA setting. .
Figure 6-13. TX Calibrated Differential Phase Error vs DSA Figure 6-14. TX Uncalibrated Integrated Phase Error vs DSA
Setting and Channel at 0.85 GHz Setting and Channel at 0.85 GHz
0.2 0.02
Uncalibrated Differential Phase Error (deg)
Calibrated Integrated Phase Error (deg)
0.15
0.1
0.01
0.05
0
-0.05
0
-0.1
-0.15
-0.2 -0.01
-0.25 -40qC
1TX 3TX 25qC
-0.3 105qC
2TX 4TX
-0.02
-0.35
0 4 8 12 16 20 24 28 32 36 40
0 4 8 12 16 20 24 28 32 36 40
DSA (dB)
DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz
Integrated Phase Error = PhaseOUT(DSA Setting) – Differential Phase Error = PhaseOUT(DSA Setting – 1) –
PhaseOUT(DSA Setting = 0) PhaseOUT(DSA Setting) + 1
Figure 6-15. TX Calibrated Integrated Phase Error vs DSA Figure 6-16. TX Uncalibrated Differential Phase Error vs DSA
Setting and Channel at 0.85 GHz Setting and Temperature at 0.85 GHz
0.18
25qC
0.16
0.01
0.14
0.12
0.1
0
0.08
0.06
-0.01 0.04
-40qC 0.02
25qC
105qC 0
-0.02
-0.02
0 4 8 12 16 20 24 28 32 36 40
0 4 8 12 16 20 24 28 32 36 40
DSA (dB)
DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz, fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz
channel with the median variation over DSA setting at 25°C Integrated Phase Error = PhaseOUT(DSA Setting) –
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting = 0)
PhaseOUT(DSA Setting) + 1 .
Figure 6-17. TX Calibrated Differential Phase Error vs DSA Figure 6-18. TX Uncalibrated Integrated Phase Error vs DSA
Setting and Temperature at 0.85 GHz Setting and Temperature at 0.85 GHz
0 -134
1TX
Calibrated Integrated Phase Error (deg)
2TX
-0.05 3TX
-139
4TX
Noise (dBFS/Hz)
-0.1
-144
-0.15
-149
-0.2
-154
-0.25
-40qC 105qC
25qC
-0.3 -159
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 0.8 GHz,
Integrated Phase Error = PhaseOUT(DSA Setting) – POUT = –13 dBFS
PhaseOUT(DSA Setting = 0) .
Figure 6-19. TX Calibrated Integrated Phase Error vs DSA Figure 6-20. TX Output Noise vs Channel and Attenuation at
Setting and Temperature at 0.85 GHz 0.85 GHz
-65 -70
1TX -71
-70 2TX
3TX -72
4TX -73
-75
-74
IMD3 (dBc)
IMD3 (dBc)
-80 -75
-76
-85 -77
-78
-90
-79 1TX
-80 2TX
-95 3TX
-81 4TX
-100 -82
0 4 8 12 16 20 24 28 32 36 40 0 40 80 120 160 200 240 280 320 360 400
DSA (dB) Tone Spacing (MHz)
fDAC = 11796.48MSPS, interleave mode, fCENTER = 0.85 GHz, fDAC = 5898.24MSPS, straight mode, fCENTER = 0.85 GHz,
matching at 0.8 GHz, –13 dBFS each tone matching at 0.8 GHz, –13 dBFS each tone
Figure 6-21. TX IMD3 vs DSA Setting at 0.85 GHz Figure 6-22. TX IMD3 vs Tone Spacing and Channel at 0.85 GHz
IMD3 (dBc)
-76 -77
-77 -78
-78 -79
-79 -80
-81
-80 1TX
-82
-81 2TX
-83 3TX
-82 -84 4TX
-83 -85
0 40 80 120 160 200 240 280 320 360 400 0 40 80 120 160 200 240 280 320 360 400
Tone Spacing (MHz) Tone Spacing (MHz)
fDAC = 8847.36MSPS, straight mode, fCENTER = 0.85 GHz, fDAC = 11796.48MSPS, interleave mode, fCENTER = 0.85 GHz,
matching at 0.8 GHz, –13 dBFS each tone matching at 0.8 GHz, –13 dBFS each tone
Figure 6-23. TX IMD3 vs Tone Spacing and Channel at 0.85 GHz Figure 6-24. TX IMD3 vs Tone Spacing and Channel at 0.85 GHz
-70 -73
-40qC -40qC
-71 25qC -74 25qC
-72 105qC 105qC
-75
-73
-76
IMD3 (dBc)
IMD3 (dBc)
-74
-77
-75
-78
-76
-79
-77
-78 -80
-79 -81
-80 -82
0 40 80 120 160 200 240 280 320 360 400 0 40 80 120 160 200 240 280 320 360 400
Tone Spacing (MHz) Tone Spacing (MHz)
fDAC = 5898.24MSPS, straight mode, fCENTER =0.85 GHz, fDAC = 8847.36MSPS, straight mode, fCENTER =0.85 GHz,
matching at 0.8 GHz, –13 dBFS each tone, worst channel matching at 0.8 GHz, –13 dBFS each tone, worst channel
Figure 6-25. TX IMD3 vs Tone Spacing and Temperature at 0.85 Figure 6-26. TX IMD3 vs Tone Spacing and Temperature at 0.85
GHz GHz
-72 -60
-73
-65
-74
-75 -70
-76 -75
IMD3 (dBc)
IMD3 (dBc)
-77
-80
-78
-79 -85
-80 -90 1TX
-81 -40qC 2TX
25qC -95 3TX
-82
105qC 4TX
-83 -100
0 40 80 120 160 200 240 280 320 360 400 -37 -34 -31 -28 -25 -22 -19 -16 -13 -10 -7
Tone Spacing (MHz) Pout/tone (dBFS)
fDAC = 11796.48MSPS, straight mode, fCENTER =0.85 GHz, fDAC = 5898.24MSPS, straight mode, fCENTER = 0.85 GHz,
matching at 0.8 GHz, –13 dBFS each tone, worst channel fSPACING = 20 MHz, matching at 0.8 GHz
Figure 6-27. TX IMD3 vs Tone Spacing and Temperature at 0.85 Figure 6-28. TX IMD3 vs Digital Level at 0.85 GHz
GHz
-65 -65
-70
-70
-75
-75
IMD3 (dBc)
IMD3 (dBc)
-80
-80
-85
-85
-90
-90 1TX 1TX
-95
2TX 2TX
-95 3TX -100 3TX
4TX 4TX
-100 -105
-37 -34 -31 -28 -25 -22 -19 -16 -13 -10 -7 -37 -34 -31 -28 -25 -22 -19 -16 -13 -10 -7
Pout/tone (dBFS) Pout/tone (dBFS)
fDAC = 8847.36MSPS, straight mode, fCENTER = 0.85 GHz, fDAC = 11796.48MSPS, interleave mode, fCENTER = 0.85 GHz,
fSPACING = 20 MHz, matching at 0.8 GHz fSPACING = 20 MHz, matching at 0.8 GHz
Figure 6-29. TX IMD3 vs Digital Level at 0.85 GHz Figure 6-30. TX IMD3 vs Digital Level at 0.85 GHz
-150
Aout=-30dBFS Aout=-6dBFS
-151 Aout=-20dBFS Aout=-1dBFS
Aout=-12dBFS
-152
Noise (dBFS/Hz)
-153
-154
-155
-156
-157
-158
-159
600 750 900 1050 1200 1350 1500
Output Frequency (MHz)
Matching at 2.6 GHz, Single tone, fDAC = 11.79648GSPS, TM1.1, POUT_RMS = –13 dBFS
interleave mode, 40-MHz offset, DSA = 0dB .
Figure 6-31. TX Single Tone Output Noise vs Frequency and Figure 6-32. TX 20-MHz LTE Output Spectrum at 0.85 GHz
Amplitude at 0.85 GHz
-52 -52
1TX 1TX
-54 2TX -54 2TX
Alternate channel ACPR (dBc)
3TX 3TX
Ajacent channel ACPR (dBc)
-60 -60
-62 -62
-64 -64
-66 -66
-68 -68
-70 -70
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12
Pout (dBFS) Pout(dBFS)
Matching at 0.8 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 0.8 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-33. TX 20-MHz LTE ACPR vs Digital Level at 0.85 GHz Figure 6-34. TX 20-MHz LTE alt-ACPR vs Digital Level at 0.85
GHz
4TX 4TX
-57
-58
-60
-61
-63
-64
-66
-67 -69
-70 -72
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
Matching at 0.8 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 0.8 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-35. TX 20-MHz LTE ACPR vs DSA at 0.85 GHz Figure 6-36. TX 20-MHz LTE alt-ACPR vs DSA at 0.85 GHz
-55 -55
-60 -60
-65 -65
-70 -70
HD2 (dBFS/Hz)
HD2 (dBFS/Hz)
-75 -75
-80 -80
-85 -85
-90 -90
1TX, -12dBFS 3TX, -12dBFS 1TX, -12dBFS 3TX, -12dBFS
-95 1TX, -6dBFS 3TX, -6dBFS -95 1TX, -6dBFS 3TX, -6dBFS
-100 2TX, -12dBFS 4TX, -12dBFS -100 2TX, -12dBFS 4TX, -12dBFS
2TX, -6dBFS 4TX, -6dBFS 2TX, -6dBFS 4TX, -6dBFS
-105 -105
600 750 900 1050 1200 1350 1500 600 750 900 1050 1200 1350 1500
Output Frequency (MHz) Output Frequency (MHz)
Matching at 0.8 GHz, fDAC = 5898.24GSPS, straight mode Matching at 0.8 GHz, fDAC = 8847.36GSPS, straight mode
Figure 6-37. TX HD2 vs Digital Amplitude and Output Frequency Figure 6-38. TX HD2 vs Digital Amplitude and Output Frequency
at 0.85 GHz at 0.85 GHz
-55 -55
-60 1TX, -12dBFS 3TX, -12dBFS -60 1TX, -12dBFS 3TX, -12dBFS
1TX, -6dBFS 3TX, -6dBFS 1TX, -6dBFS 3TX, -6dBFS
-65 2TX, -12dBFS 4TX, -12dBFS -65 2TX, -12dBFS 4TX, -12dBFS
-70 2TX, -6dBFS 4TX, -6dBFS -70 2TX, -6dBFS 4TX, -6dBFS
-75 -75
HD3 (dBFS/Hz)
HD3 (dBFS/Hz)
-80 -80
-85 -85
-90 -90
-95 -95
-100 -100
-105 -105
-110 -110
-115 -115
600 750 900 1050 1200 1350 1500 600 750 900 1050 1200 1350 1500
Output Frequency (MHz) Output Frequency (MHz)
Matching at 0.8 GHz, fDAC = 5898.24MSPS, straight mode, Matching at 0.8 GHz, fDAC = 8847.36MSPS, straight mode,
normalized to output power at harmonic frequency normalized to output power at harmonic frequency
Figure 6-39. TX HD3 vs Digital Amplitude and Output Frequency Figure 6-40. TX HD3 vs Digital Amplitude and Output Frequency
at 0.85 GHz at 0.85 GHz
Amplitude (dBm)
-30
-40
-40
-50
-50
-60
-60
-70
-70
-80 -80
-90 -90
-100 -100
-110 -110
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Output Frequency (MHz) Output Frequency (MHz)
fDAC = 5898.24MSPS, interleave mode, 0.8 GHz matching, fDAC = 5898.24MSPS, interleave mode, 0.8 GHz matching,
includes PCB and cable losses. ILn = fS/n ± fOUT. includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-41. TX Single Tone (–12 dBFS) Output Spectrum at Figure 6-42. TX Single Tone (–6 dBFS) Output Spectrum at 0.85
0.85 GHz (0-fDAC) GHz (0-fDAC)
10
0 Tone = 5.0dBm
HD2 = -47.7dBm
-10 HD3 = -67.7dBm
-20 IL2 = -65.2dBm
Amplitude (dBm)
-30
-40
-50
-60
-70
-80
-90
-100
-110
0 1000 2000 3000 4000 5000 6000
Output Frequency (MHz)
fDAC = 5898.24MSPS, interleave mode, 0.8 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-43. TX Single Tone (–1 dBFS) Output Spectrum at 0.85 GHz (0-fDAC)
including PCB and cable losses, Aout = -0.5dFBS, DSA = 0, Aout = -0.5dFBS, matching 1.8 GHz
1.8 GHz matching .
Figure 6-44. TX Output Fullscale vs Output Frequency Figure 6-45. TX Output Power vs Temperature at 1.8 GHz
0.05 0.05
Uncalibrated Differential Gain Error (dB)
fDAC=5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC=5898.24MSPS, interleave mode, matching at 1.8 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting) + 1 Setting) + 1
Figure 6-46. TX Uncalibrated Differential Gain Error vs DSA Figure 6-47. TX Calibrated Differential Gain Error vs DSA
Setting and Channel at 1.8 GHz Setting and Channel at 1.8 GHz
0.35 0.06
1TX
Uncalibrated Integrated Gain Error (dB)
0.3 2TX
0.04 3TX
4TX
0.25
0.02
0.2
0
0.15
-0.02
0.1
1TX
2TX -0.04
0.05 3TX
4TX
0 -0.06
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC=5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Setting = 0) + (DSA Setting) Setting = 0) + (DSA Setting)
Figure 6-48. TX Uncalibrated Integrated Gain Error vs DSA Figure 6-49. TX Calibrated Integrated Gain Error vs DSA Setting
Setting and Channel at 1.8 GHz and Channel at 1.8 GHz
0 -0.01
-0.01 -0.02
-0.02
-0.03
-0.03 -40 qC -40 qC
-0.04 25 qC -0.04 25 qC
105 qC 105 qC
-0.05 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting) + 1 Setting) + 1
Figure 6-50. TX Uncalibrated Differential Gain Error vs DSA Figure 6-51. TX Calibrated Differential Gain Error vs DSA
Setting and Temperature at 1.8 GHz Setting and Temperature at 1.8 GHz
0.35 0.06
-40 qC -40 qC
Uncalibrated Integrated Gain Error (dB)
0.3 25 qC 25 qC
105 qC 0.04 105 qC
0.25
0.2 0.02
0.15
0.1 0
0.05
-0.02
0
-0.05 -0.04
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Setting = 0) + (DSA Setting) Setting = 0) + (DSA Setting)
Figure 6-52. TX Uncalibrated Integrated Gain Error vs DSA Figure 6-53. TX Calibrated Integrated Gain Error vs DSA Setting
Setting and Temperature at 1.8 GHz and Temperature at 1.8 GHz
0.05 0.25
Uncalibrated Differential Phase Error (deg)
1TX 3TX
2TX 4TX 0.2
0.04
0.15
0.03 0.1
0.05
0.02
0
0.01
-0.05
0 -0.1
-0.15
-0.01 1TX 3TX
-0.2
2TX 4TX
-0.02 -0.25
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Differential Phase Error = PhaseOUT(DSA Setting – 1) –
PhaseOUT(DSA Setting) PhaseOUT(DSA Setting)
. Phase DNL spike may occur at any DSA setting.
Figure 6-54. TX Uncalibrated Differential Phase Error vs DSA Figure 6-55. TX Calibrated Differential Phase Error vs DSA
Setting and Channel at 1.8 GHz Setting and Channel at 1.8 GHz
1TX 3TX
0
0.3
-0.1
0.25
-0.2
0.2
-0.3
0.15
-0.4
0.1
-0.5
0.05 -0.6 1TX 3TX
2TX 4TX
0 -0.7
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
Setting = 0) Setting = 0)
Figure 6-56. TX Uncalibrated Integrated Phase Error vs DSA Figure 6-57. TX Calibrated Integrated Phase Error vs DSA
Setting and Channel at 1.8 GHz Setting and Channel at 1.8 GHz
0.03 0.02
Uncalibrated Differential Phase Error (deg)
0.02
0.01
0.01
0
0
-0.01
-0.01 -40qC -40qC
25qC 25qC
105qC 105qC
-0.02 -0.02
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz,
Differential Phase Error = PhaseOUT(DSA Setting – 1) – channel with the median variation over DSA setting at 25°C
PhaseOUT(DSA Setting) Differential Phase Error = PhaseOUT(DSA Setting – 1) –
. PhaseOUT(DSA Setting)
Figure 6-58. TX Uncalibrated Differential Phase Error vs DSA Figure 6-59. TX Calibrated Differential Phase Error vs DSA
Setting and Temperature at 1.8 GHz Setting and Temperature at 1.8 GHz
-40qC 105qC
0.18 -0.1
0.14 -0.15
0.1
-0.2
0.06
0.02 -0.25 -40qC 105qC
25qC
-0.02 -0.3
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz, fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz,
channel with the median variation over DSA setting at 25°C channel with the median variation over DSA setting at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
Setting = 0) Setting = 0)
Figure 6-60. TX Uncalibrated Integrated Phase Error vs DSA Figure 6-61. TX Calibrated Integrated Phase Error vs DSA
Setting and Temperature at 1.8 GHz Setting and Temperature at 1.8 GHz
-134 -65
1TX 1TX
2TX 2TX
3TX -70 3TX
-139
4TX 4TX
Noise (dBFS/Hz)
-75
IMD3 (dBc)
-144
-80
-149
-85
-154
-90
-159 -95
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 5898.24MSPS, interleave mode, matching at 1.8 GHz, fDAC = 11796.48MSPS, interleave mode, fCENTER = 1.8 GHz,
POUT = –13 dBFS matching at 1.8 GHz, –13 dBFS each tone
Figure 6-62. TX Output Noise vs Channel and Attenuation at 1.8 Figure 6-63. TX IMD3 vs DSA Setting at 1.8 GHz
GHz
-68 -68
-40qC
-70 25qC
-70 105qC
-72
-72
IMD3 (dBc)
IMD3 (dBc)
-74
-74
-76
-76
-78
1TX
2TX -78
-80 3TX
4TX
-82 -80
0 40 80 120 160 200 240 280 320 360 400 0 40 80 120 160 200 240 280 320 360 400
Tone Spacing (MHz) Tone Spacing (MHz)
fDAC = 11796.48MSPS, interleave mode, fCENTER = 1.8 GHz, fDAC = 11796.48MSPS, interleave mode, fCENTER = 1.8 GHz,
matching at 1.8 GHz, –13 dBFS each tone matching at 1.8 GHz, –13 dBFS each tone, worst channel
Figure 6-64. TX IMD3 vs Tone Spacing and Channel at 1.8 GHz Figure 6-65. TX IMD3 vs Tone Spacing and Temperature at 1.8
GHz
Noise (dBFS/Hz)
-75
IMD3 (dBc)
-80 -152
-85 -154
-90
-156
-95 1TX
2TX
3TX -158
-100
4TX
-105 -160
-37 -34 -31 -28 -25 -22 -19 -16 -13 -10 -7 1200 1350 1500 1650 1800 1950 2100 2250 2400 2550 2700
Pout/tone (dBFS) Output Frequency (MHz)
fDAC = 11796.48MSPS, interleave mode, fCENTER = 1.8 GHz, Matching at 2.6 GHz, Single tone, fDAC = 11.79648GSPS,
fSPACING = 20 MHz, matching at 1.8 GHz interleave mode, 40-MHz offset
Figure 6-66. TX IMD3 vs Digital Level at 1.8 GHz Figure 6-67. TX Single Tone Output Noise vs Frequency and
Amplitude at 1.8 GHz
-54
1TX
-56 2TX
3TX
Ajacent channel ACPR (dBc)
-58 4TX
-60
-62
-64
-66
-68
-70
-72
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12
Pout (dBFS)
TM1.1, POUT_RMS = –13 dBFS
Matching at 1.8 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-68. TX 20-MHz LTE Output Spectrum at 1.8425 GHz
Figure 6-69. TX 20-MHz LTE ACPR vs Digital Level at 1.8425
GHz
-55 -51
1TX 1TX
-57 2TX 2TX
-54
Alternate channel ACPR (dBc)
3TX 3TX
Ajacent channel ACPR (dBc)
-63 -60
-65 -63
-67
-66
-69
-69
-71
-73 -72
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 0 4 8 12 16 20 24 28 32 36 40
Pout(dBFS) DSA (dB)
Matching at 1.8 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 1.8 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-70. TX 20-MHz LTE alt-ACPR vs Digital Level at 1.8425 Figure 6-71. TX 20-MHz LTE ACPR vs DSA at 1.8 GHz
GHz
3TX
-55 4TX
-75
HD2 (dBFS/Hz)
-58
-61 -85
-64
-95
-67 1TX, -12dBFS 3TX, -12dBFS
-105 1TX, -6dBFS 3TX, -6dBFS
-70 2TX, -12dBFS 4TX, -12dBFS
2TX, -6dBFS 4TX, -6dBFS
-73 -115
0 4 8 12 16 20 24 28 32 36 40 1200 1500 1800 2100 2400 2700
DSA (dB) Output Frequency (MHz)
Matching at 1.8 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 1.8 GHz, fDAC = 11.79648GSPS, interleave mode,
. normalized to output power at harmonic frequency
Figure 6-72. TX 20-MHz LTE alt-ACPR vs DSA at 1.8 GHz Figure 6-73. TX HD2 vs Digital Amplitude and Output Frequency
at 1.8 GHz
-65 0
-10 Tone = -8.4dBm
-75 HD2 = -85.8dBm
-20 HD3 = -86.1dBm
-85 -30 IL2 = -81.3dBm
IL3 = -72.0dBm
Amplitude (dBm)
-40
HD3 (dBFS/Hz)
-95
-50
-105 -60
-70
-115
-80
-125 1TX, -12dBFS 3TX, -12dBFS -90
1TX, -6dBFS 3TX, -6dBFS -100
-135 2TX, -12dBFS 4TX, -12dBFS
2TX, -6dBFS 4TX, -6dBFS -110
-145 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1200 1350 1500 1650 1800 1950 2100 2250 2400 2550 2700 Output Frequency (MHz)
Output Frequency (MHz)
fDAC = 8847.36MSPS, straight mode, 1.8 GHz matching,
Matching at 1.8 GHz, fDAC = 11.79648GSPS, interleave mode, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to
normalized to output power at harmonic frequency mixing with digital clocks.
Figure 6-74. TX HD3 vs Digital Amplitude and Output Frequency Figure 6-75. TX Single Tone (–12 dBFS) Output Spectrum at 1.8
at 1.8 GHz GHz (0-fDAC)
0 10
-10 Tone = -2.4dBm 0 Tone = 2.6dBm
HD2 = -71.7dBm HD2 = -60.7dBm
-20 HD3 = -74.6dBm -10 HD3 = -57.7dBm
-30 IL2 = -73.9dBm -20 IL2 = -69.0dBm
IL3 = -66.0dBm IL3 = -60.8dBm
Amplitude (dBm)
Amplitude (dBm)
-30
-40
-40
-50
-50
-60
-60
-70
-70
-80 -80
-90 -90
-100 -100
-110 -110
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Output Frequency (MHz) Output Frequency (MHz)
fDAC = 8847.36MSPS, straight mode, 1.8 GHz matching, fDAC = 8847.36MSPS, straight mode, 1.8 GHz matching,
includes PCB and cable losses. ILn = fS/n ± fOUT and is due to includes PCB and cable losses. ILn = fS/n ± fOUT and is due to
mixing with digital clocks. mixing with digital clocks.
Figure 6-76. TX Single Tone (–6 dBFS) Output Spectrum at 1.8 Figure 6-77. TX Single Tone (–1 dBFS) Output Spectrum at 1.8
GHz (0-fDAC) GHz (0-fDAC)
1 -15
-20
0
-25
-1 -30
straight mode
interleave mode -35
-2
2000 2200 2400 2600 2800 3000 3200 -40
Frequency (MHz)
0 5 10 15 20 25 30 35 40
Including PCB and cable losses, Aout = -0.5dBFS, DSA = 0, DSA (dB)
2.6 GHz matching fDAC = 8847.36 MSPS, Aout = -0.5dBFS, matching 2.6 GHz
Figure 6-78. TX Full Scale vs RF Frequency at 11796.48MSPS Figure 6-79. TX Output Power vs DSA Setting and Channel at
2.6 GHz
0.05 0.05
Uncalibrated Differential Gain Error (dB)
1TX 3TX
0.04 Calibrated Differential Gain Error (dB) 0.04 2TX 4TX
0.03 0.03
0.02 0.02
0.01 0.01
0 0
-0.01 -0.01
-0.02 -0.02
1TX
-0.03 2TX -0.03
-0.04 3TX -0.04
4TX
-0.05 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC=8847.36MSPS, straight mode, matching at 2.6 GHz fDAC=8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting) + 1 Setting) + 1
Figure 6-80. TX Uncalibrated Differential Gain Error vs DSA Figure 6-81. TX Calibrated Differential Gain Error vs DSA
Setting and Channel at 2.6 GHz Setting and Channel at 2.6 GHz
0.45 0.08
1TX
Uncalibrated Integrated Gain Error (dB)
0.4 2TX
0.06 3TX
0.35 4TX
0.3 0.04
0.25
0.02
0.2
0.15 0
0.1 1TX
2TX -0.02
0.05 3TX
4TX
0 -0.04
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC=8847.36MSPS, straight mode, matching at 2.6 GHz fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Setting = 0) + (DSA Setting) Setting = 0) + (DSA Setting)
Figure 6-82. TX Uncalibrated Integrated Gain Error vs DSA Figure 6-83. TX Calibrated Integrated Gain Error vs DSA Setting
Setting and Channel at 2.6 GHz and Channel at 2.6 GHz
0 -0.01
-0.01 -0.02
-0.02
-0.03
-0.03 -40 qC -40 qC
-0.04 25 qC -0.04 25 qC
105 qC 105 qC
-0.05 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz,
channel with the median variation over DSA setting at 25°C channel with the median variation over DSA setting at 25°C
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting) + 1 Setting) + 1
Figure 6-84. TX Uncalibrated Differential Gain Error vs DSA Figure 6-85. TX Calibrated Differential Gain Error vs DSA
Setting and Temperature at 2.6 GHz Setting and Temperature at 2.6 GHz
0.4 0.08
-40 qC -40 qC
Uncalibrated Integrated Gain Error (dB)
0.35 25 qC 25 qC
105 qC 0.06 105 qC
0.3
0.25 0.04
0.2
0.02
0.15
0.1 0
0.05
-0.02
0
-0.05 -0.04
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz,
channel with the median variation over DSA setting at 25°C channel with the median variation over DSA setting at 25°C
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Setting = 0) + (DSA Setting) Setting = 0) + (DSA Setting)
Figure 6-86. TX Uncalibrated Integrated Gain Error vs DSA Figure 6-87. TX Calibrated Integrated Gain Error vs DSA Setting
Setting and Temperature at 2.6 GHz and Temperature at 2.6 GHz
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Differential Phase Error = PhaseOUT(DSA Setting – 1) –
PhaseOUT(DSA Setting) PhaseOUT(DSA Setting)
. Phase DNL spike may occur at any DSA setting.
Figure 6-88. TX Uncalibrated Differential Phase Error vs DSA Figure 6-89. TX Calibrated Differential Phase Error vs DSA
Setting and Channel at 2.6 GHz Setting and Channel at 2.6 GHz
0.2 0.2
Uncalibrated Integrated Phase Error (deg)
0.15
0.15
0.1
0.1 0.05
0.05 0
-0.05
0
-0.1
-0.05 -0.15
-0.1 -0.2
-0.25
-0.15 1TX 3TX 1TX 3TX
-0.3
2TX 4TX 2TX 4TX
-0.2 -0.35
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
Setting = 0) Setting = 0)
Figure 6-90. TX Uncalibrated Integrated Phase Error vs DSA Figure 6-91. TX Calibrated Integrated Phase Error vs DSA
Setting and Channel at 2.6 GHz Setting and Channel at 2.6 GHz
-0.01 -0.02
-0.03
-0.02
-40 Cq -0.04 -40qC
-0.03 25qC -0.05 25qC
105qC 105qC
-0.04 -0.06
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz,
channel with the median variation over DSA setting at 25°C channel with the median variation over DSA setting at 25°C
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Differential Phase Error = PhaseOUT(DSA Setting – 1) –
PhaseOUT(DSA Setting) PhaseOUT(DSA Setting)
Figure 6-92. TX Uncalibrated Differential Phase Error vs DSA Figure 6-93. TX Calibrated Differential Phase Error vs DSA
Setting and Temperature at 2.6 GHz Setting and Temperature at 2.6 GHz
0.3 0.3
Uncalibrated Integrated Phase Error (deg)
-40qC -40qC
Calibrated Integrated Phase Error (deg)
0.25 0.25
25qC 25qC
0.2 105qC 0.2 105qC
0.15 0.15
0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
-0.2 -0.2
-0.25 -0.25
-0.3 -0.3
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz,
channel with the medium variation over DSA setting at 25°C channel with the median variation over DSA setting at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
Setting = 0) Setting = 0)
Figure 6-94. TX Uncalibrated Integrated Phase Error vs DSA Figure 6-95. TX Calibrated Integrated Phase Error vs DSA
Setting and Temperature at 2.6 GHz Setting and Temperature at 2.6 GHz
-141
IMD3 (dBc)
-80
-144
-147
-85
-150
-153 1TX
-90 2TX
-156 3TX
4TX
-159 -95
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz,
POUT = –13 dBFS matching at 2.6 GHz, –13 dBFS each tone
Figure 6-96. TX Output Noise vs Channel and Attenuation at 2.6 Figure 6-97. TX IMD3 vs DSA Setting at 2.6 GHz
GHz
-60 -60
1TX TA = -40qC
2TX -62 TA = 25qC
3TX -64 TA = 105qC
-65 4TX
-66
IMD3 (dBc)
IMD3 (dBc)
-68
-70 -70
-72
-74
-75
-76
-78
-80 -80
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Tone Spacing (MHz) Tone Spacing (MHz)
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz,
matching at 2.6 GHz, –13 dBFS each tone matching at 2.6 GHz, –13 dBFS each tone, worst channel.
Figure 6-98. TX IMD3 vs Tone Spacing and Channel at 2.6 GHz Figure 6-99. TX IMD3 vs Tone Spacing and Temperature at 2.6
GHz
-55 -65
-60
-65
-70
-70
-75
-80
IMD3 (dBc)
IMD3 (dBc)
-75
-85
-90
-95 -80
-40qC, straight mode
-100 -40qC, interleaved mode
-105 1TX 25qC, straight mode
2TX -85 25qC, interleaved mode
-110
3TX 105qC, straight mode
-115 4TX 105qC, interleaved mode
-120 -90
-40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400
POUT/tone (dBFS) Tone Spacing (MHz)
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz,
fSPACING = 20 MHz, matching at 2.6 GHz matching at 2.6 GHz, –13 dBFS each tone
Figure 6-100. TX IMD3 vs Digital Level at 2.6 GHz Figure 6-101. TX IMD3 vs Tone Spacing and Temperature
-151
-152
-153
-154
-155
-156
-157
-158
-159
-160
2000 2200 2400 2600 2800 3000 3200 TM1.1, POUT_RMS = –13 dBFS
Output Frequency (MHz)
.
Matching at 2.6 GHz, Single tone, fDAC = 11.79648GSPS,
.
interleave mode, 40-MHz offset
.
Figure 6-102. TX Single Tone Output Noise vs Frequency and
Figure 6-103. TX 20-MHz LTE Output Spectrum at 2.6 GHz (Band
Amplitude at 2.6 GHz
41)
-55 -55
1TX 1TX
2TX 2TX
3TX 3TX
-60 4TX -60 4TX
alt-ACPR (dBc)
ACPR (dBc)
-65 -65
-70 -70
-75 -75
-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12
Pout (dBFS) Pout (dBFS)
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-104. TX 20-MHz LTE ACPR vs Digital Level at 2.6 GHz Figure 6-105. TX 20-MHz LTE alt-ACPR vs Digital Level at 2.6
GHz
-51 -51
1TX 1TX
-54 2TX -54 2TX
Alternate channel ACPR (dBc)
3TX 3TX
Ajacent channel ACPR (dBc)
4TX 4TX
-57 -57
-60 -60
-63 -63
-66 -66
-69 -69
-72 -72
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-106. TX 20-MHz LTE ACPR vs DSA at 2.6 GHz Figure 6-107. TX 20-MHz LTE alt-ACPR vs DSA at 2.6 GHz
4TX 4TX
-57 -57
-60 -60
-63 -63
-66 -66
-69 -69
-72 -72
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-108. TX 20-MHz LTE ACPR vs DSA at 2.6 GHz Figure 6-109. TX 20-MHz LTE alt-ACPR vs DSA at 2.6 GHz
-42 -43
1TX 1TX
-45 2TX -46 2TX
Alternate channel ACPR (dBc)
3TX 3TX
Ajacent channel ACPR (dBc)
-51 -52
-54 -55
-57 -58
-60 -61
-63 -64
-66 -67
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 6-110. TX 100-MHz NR ACPR vs DSA at 2.6 GHz Figure 6-111. TX 100-MHz NR alt-ACPR vs DSA at 2.6 GHz
-40 -50
1TX, -12dBFS 3TX, -12dBFS
-60 1TX, -6dBFS 3TX, -6dBFS
-50 2TX, -12dBFS 4TX, -12dBFS
2TX, -6dBFS 4TX, -6dBFS
-70
-60
HD2 (dBFS)
HD3 (dBFS)
-80
-70
-90
-80
-100
1TX, -12dBFS 3TX, -12dBFS
-90 1TX, -6dBFS 3TX, -6dBFS
2TX, -12dBFS 4TX, -12dBFS -110
2TX, -6dBFS 4TX, -6dBFS
-100 -120
1800 2000 2200 2400 2600 2800 3000 3200 1800 2000 2200 2400 2600 2800 3000 3200
FOUT (MHz) FOUT (MHz)
Matching at 2.6 GHz, fDAC = 11.79648GSPS, interleave mode, Matching at 2.6 GHz, fDAC = 11.79648GSPS, interleave mode,
normalized to output power at harmonic frequency normalized to output power at harmonic frequency
Figure 6-112. TX HD2 vs Digital Amplitude and Output Figure 6-113. TX HD3 vs Digital Amplitude and Output
Frequency at 2.6 GHz Frequency at 2.6 GHz
0 0
-10 Tone=-9.85dBm -10 Tone=-3.9dBm
HD2=-82.2dBm HD2=-66.4dBm
-20 HD3<-90dBm -20 HD3=-81.4dBm
IL2=-69.0dBm IL2=-62.7dBm
-30 IL3=-84.0dBm -30 IL3=-80.1dBm
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50 -50
-60 -60
-70 -70
-80 -80
-90 -90
-100 -100
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency (MHz) Frequency (MHz)
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching,
includes PCB and cable losses. ILn = fS/n ± fOUT and is due to includes PCB and cable losses. ILn = fS/n ± fOUT and is due to
mixing with digital clocks. mixing with digital clocks.
Figure 6-114. TX Single Tone (–12 dBFS) Output Spectrum at 2.6 Figure 6-115. TX Single Tone (–6 dBFS) Output Spectrum at 2.6
GHz (0-fDAC) GHz (0-fDAC)
10 70
0 Tone=+1.1dBm 71
HD2=-57.5dBm
-10 HD3=-64.0dBm 72
IL2=-57.7dBm
-20 IL3=-74.3dBm 73
Amplitude (dBm)
IMD3 (dBc)
-30 74
-40 75
-50 76
-60 77
-70 78
-80 79
-90 80
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 MIN TYP MAX
Supply Voltages
Frequency (MHz)
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, fDAC = 11796.48MSPS, interleave mode, 2.6 GHz matching.
includes PCB and cable losses. ILn = fS/n ± fOUT and is due to 40-MHz offset from tone. Output Power = –13 dBFS. All
mixing with digital clocks. supplies simultaneously at MIN, TYP, or MAX voltages.
Figure 6-116. TX Single Tone (–1 dBFS) Output Spectrum at 2.6 Figure 6-117. TX IMD3 vs Supply Voltage at 2.6 GHz
GHz (0-fDAC)
5 5
fDAC=8847.36, straight mode 1TX
4 fDAC=11796.48, straight mode 0 2TX
fDAC=8847.36, interleave mode 3TX
3 -5 4TX
fDAC=11796.48, interleave mode
2 -10
1 -15
0 -20
-1 -25
-2 -30
-3 -35
-4 -40
0 5 10 15 20 25 30 35 40
-5 DSA (dB)
2800 3000 3200 3400 3600 3800 4000 4200
Fundamental Frequency (MHz) Aout = -0.5dFBS, 3.5 GHz Matching, included PCB and cable
Aout = -0.5dFBS, 3.5 GHz Matching, included PCB and cable losses
losses Figure 6-119. TX Output Power vs DSA Setting at 3.5 GHz
Figure 6-118. TX Output Power vs Frequency
0.06 0.05
Uncalibrated Differential Gain Error (dB)
1TX 3TX
Calibrated Differential Gain Error (dB)
3.5 GHz Matching, included PCB and cable losses 3.5 GHz Matching, included PCB and cable losses
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting) + 1 Setting) + 1
Figure 6-120. TX Uncalibrated Differential Gain Error vs DSA Figure 6-121. TX Calibrated Differential Gain Error vs DSA
Setting and Channel at 3.5 GHz Setting and Channel at 3.5 GHz
3.5 GHz Matching, included PCB and cable losses 3.5 GHz Matching, included PCB and cable losses
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Setting = 0) + (DSA Setting) Setting = 0) + (DSA Setting)
Figure 6-122. TX Uncalibrated Integrated Gain Error vs DSA Figure 6-123. TX Calibrated Integrated Gain Error vs DSA
Setting and Channel at 3.5 GHz Setting and Channel at 3.5 GHz
0.08 0.3
Uncalibrated Differential Phase Error (deg)
1TX 3TX
2TX 4TX
0.06 0.2
0.04 0.1
0.02 0
0 -0.1
-0.02 -0.2
1TX 3TX
2TX 4TX
-0.04 -0.3
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
3.5 GHz Matching, included PCB and cable losses 3.5 GHz Matching, included PCB and cable losses
. Phase DNL spike may occur at any DSA setting.
Figure 6-124. TX Uncalibrated Differential Phase Error vs DSA Figure 6-125. TX Calibrated Differential Phase Error vs DSA
Setting and Channel at 3.5 GHz Setting and Channel at 3.5 GHz
0.6 0.2
Uncalibrated Integrated Phase Error (deg)
0.5 0.1
0
0.4
-0.1
0.3
-0.2
0.2
-0.3
0.1 -0.4
1TX 3TX 1TX 3TX
2TX 4TX 2TX 4TX
0 -0.5
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
3.5 GHz Matching, included PCB and cable losses 3.5 GHz Matching, included PCB and cable losses
Figure 6-126. TX Uncalibrated Integrated Phase Error vs DSA Figure 6-127. TX Calibrated Integrated Phase Error vs DSA
Setting and Channel at 3.5 GHz Setting and Channel at 3.5 GHz
0 -0.01
-0.01 -0.02
-0.02
-0.03
-0.03 -40 qC -40 qC
-0.04 25 qC -0.04 25 qC
105 qC 105 qC
-0.05 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
3.5 GHz Matching, 1TX 3.5 GHz Matching, 1TX, Calibrated at 25°C
Figure 6-128. TX Uncalibrated Differential Gain Error vs DSA Figure 6-129. TX Calibrated Differential Gain Error vs DSA
Setting and Temperature at 3.5 GHz Setting and Temperature at 3.5 GHz
0.5 0.02
-40 qC
Uncalibrated Integrated Gain Error (dB)
0.3
0.25
-0.02
0.2
0.15
0.1 -0.04
0.05 -40 qC
25 qC
0
105 qC
-0.05 -0.06
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
3.5 GHz Matching, 1TX 3.5 GHz Matching, 1TX, Calibrated at 25°C
Figure 6-130. TX Uncalibrated Integrated Gain Error vs DSA Figure 6-131. TX Calibrated Integrated Gain Error vs DSA
Setting and Temperature at 3.5 GHz Setting and Temperature at 3.5 GHz
0.08 0.06
Uncalibrated Differential Phase Error (deg)
-40qC
Calibrated Differential Phase Error (deg)
3.5 GHz Matching, 1TX 3.5 GHz Matching, 1TX, Calibrated at 25°C
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Differential Phase Error = PhaseOUT(DSA Setting – 1) –
PhaseOUT(DSA Setting) PhaseOUT(DSA Setting)
Figure 6-132. TX Uncalibrated Differential Phase Error vs DSA Figure 6-133. TX Calibrated Differential Phase Error vs DSA
setting and Temperature at 3.5 GHz Setting and Temperature at 3.5 GHz
-40qC -40qC
3.5 GHz Matching, 1TX 3.5 GHz Matching, 1TX, Calibrated at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
Setting=0) Setting = 0)
Figure 6-134. TX Uncalibrated Integrated Phase Error vs DSA Figure 6-135. TX Calibrated Integrated Phase Error vs DSA
Setting and Temperature at 3.5 GHz Setting and Temperature at 3.5 GHz
-130 -66
1TX
2TX
-135 3TX -69
4TX
Noise (dBFS/Hz)
-140 -72
IMD3 (dBc)
-145 -75
-150 -78
1TX
-155 -81 2TX
3TX
4TX
-160 -84
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC=11796.48MSPS, interleave mode, matching at 3.5GHz, 20-MHz tone spacing, 3.5 GHz Matching, –13 dBFS each
Aout = –13 dBFS. tone, included PCB and cable losses
Figure 6-136. TX NSD vs DSA Setting at 3.5 GHz Figure 6-137. TX IMD3 vs DSA Setting at 3.5 GHz
-50
-55
-60
-65
IMD3 (dBc)
-70
-75
-80
-85
1TX
-90 2TX
-95 3TX
4TX
-100
-40 -35 -30 -25 -20 -15 -10 -5
POUT/tone (dBFS)
-57 -58
-60 -61
-63 -64
-66 -67
-69 -70
-72 -73
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
3.5 GHz Matching, single carrier 20-MHz BW TM1.1 LTE 3.5 GHz Matching, single carrier 20-MHz BW TM1.1 LTE
Figure 6-140. TX 20-MHz LTE ACPR vs DSA Setting at 3.5 GHz Figure 6-141. TX 20-MHz LTE alt-ACPR vs DSA Setting at 3.5
GHz
-55 -55
1TX 1TX
2TX 2TX
Alternate Channel ACPR (dBc)
3TX 3TX
-60 4TX -60 4TX
ACPR (dBc)
-65 -65
-70 -70
-75 -75
-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12
POUT (dBFS) POUT (dBFS)
3.5 GHz Matching, single carrier 20-MHz BW TM1.1 LTE 3.5 GHz Matching, single carrier 20-MHz BW TM1.1 LTE
Figure 6-142. TX 20-MHz LTE ACPR vs Digital Level at 3.5 GHz Figure 6-143. TX 20-MHz LTE alt-ACPR vs Digital Level at 3.5
GHz
-30 -60
1TX, -12dBFS 3TX, -12dBFS
-40 1TX, -6dBFS 3TX, -6dBFS
2TX, -12dBFS 4TX, -12dBFS -70
2TX, -6dBFS 4TX, -6dBFS
-50
-80
HD2 (dBFS)
HD3 (dBFS)
-60
-90
-70
-100
-80
1TX, -12dBFS 3TX, -12dBFS
-110 1TX, -6dBFS 3TX, -6dBFS
-90 2TX, -12dBFS 4TX, -12dBFS
2TX, -6dBFS 4TX, -6dBFS
-100 -120
2800 3000 3200 3400 3600 3800 4000 4200 2800 3000 3200 3400 3600 3800 4000 4200
FOUT (MHz) FOUT (MHz)
Matching at 3.5 GHz, fDAC = 11.79648GSPS, interleave mode, Matching at 3.5 GHz, fDAC = 11.79648GSPS, interleave mode,
normalized to output power at harmonic frequency normalized to output power at harmonic frequency. Dip is due
. to HD3 falling near DC.
Figure 6-144. TX Single Tone HD2 vs Frequency and Digital Figure 6-145. TX Single Tone HD3 vs Frequency and Digital
Level at 3.5 GHz Level at 3.5 GHz
Amplitude (dBm)
-30
Fs/2=-44dBm
-40 -40
-50 -50
-60 -60
-70
-70
-80
-80
-90
-100 -90
-110 -100
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) D095
Frequency (MHz) D096
Matching at 3.5 GHz, fDAC = 11.79648GSPS, interleave mode. Matching at 3.5 GHz, fDAC = 11.79648GSPS, interleave mode.
Figure 6-146. TX Single Tone (–1 dBFS) Output Spectrum at 3.5 Figure 6-147. TX Single Tone (–6 dBFS) Output Spectrum at 3.5
GHz (0 - fDAC) GHz (0-fDAC)
0
-10 Tone=-10.9dBm
HD2=-76dBm
-20 HD3=-83dBm
IL2=-54dBm
-30 fs/2=-44dBm
Amplitude (dBm)
-40
-50
-60
-70
-80
-90
-100
0 2000 4000 6000 8000 10000 12000
Frequency (MHz) D098
1.8
-0.6
1.6
1.4 -0.8
1.2 -1
1 -1.2
0.8
-1.4
0.6
-1.6
0.4
0.2 -1.8
0 -2
4300 4500 4700 4900 5100 5300 5500 4300 4500 4700 4900 5100 5300 5500
Output Frequency (MHz) Output Frequency (MHz)
Excluding PCB and cable losses, Aout = -0.5dFBS, DSA = 0, Excluding PCB and cable losses, Aout = -0.5dFBS, DSA = 0,
4.9 GHz matching 4.9 GHz matching
Figure 6-149. TX Full Scale vs RF Frequency and Channel at Figure 6-150. TX Full Scale vs RF Frequency and Channel at
11796.48MSPS 5898.24MSPS, Straight Mode, 2nd Nyquist Zone
0.02
0.8
0.01
0.4
0
0 -0.01
-0.4 -0.02
1TX
-0.8 -0.03 2TX
-0.04 3TX
-1.2
4TX
-1.6 -0.05
0 4 8 12 16 20 24 28 32 36 40
-2 DSA (dB)
-45 -20 5 30 55 80 105
Temperature (Cq)
fDAC=11796.48MSPS, interleave mode, matching at 4.9 GHz
fDAC = 11796.48 MSPS, Aout = -0.5dFBS, matching 4.9 GHz Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
. Setting) + 1
Figure 6-151. TX Output Power vs DSA Setting and Channel at Figure 6-152. TX Uncalibrated Differential Gain Error vs DSA
4.9 GHz Setting and Channel at 4.9 GHz
0.05 0.5
1TX
Uncalibrated Integrated Gain Error (dB)
Calibrated Differential Gain Error (dB)
fDAC=11796.48MSPS, interleave mode, matching at 4.9 GHz fDAC=11796.48MSPS, interleave mode, matching at 4.9 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Setting) + 1 Setting = 0) + (DSA Setting)
Figure 6-153. TX Calibrated Differential Gain Error vs DSA Figure 6-154. TX Uncalibrated Integrated Gain Error vs DSA
Setting and Channel at 4.9 GHz Setting and Channel at 4.9 GHz
-0.04 -0.01
-0.02
-0.06
-0.03 -40 qC
-0.08 -0.04 25 qC
105 qC
-0.1 -0.05
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 11796.48MSPS, interleave mode, matching at 4.9 GHz fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA GHz
Setting = 0) + (DSA Setting) Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
. Setting) + 1
Figure 6-155. TX Calibrated Integrated Gain Error vs DSA Figure 6-156. TX Uncalibrated Differential Gain Error vs DSA
Setting and Channel at 4.9 GHz Setting and Temperature at 4.9 GHz
0.03 0.5
-40 qC
Uncalibrated Integrated Gain Error (dB)
0.45
Calibrated Differential Gain Error (dB)
0.02 25 qC
0.4 105 qC
0.01 0.35
0.3
0
0.25
-0.01 0.2
-0.02 0.15
0.1
-0.03
q 0.05
-40 C
-0.04 25 qC 0
105 qC -0.05
-0.05 0 4 8 12 16 20 24 28 32 36 40
0 4 8 12 16 20 24 28 32 36 40 DSA (dB)
DSA (dB)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz
GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA
Setting = 0) + (DSA Setting)
Setting) + 1
Figure 6-158. TX Uncalibrated Integrated Gain Error vs DSA
Figure 6-157. TX Calibrated Differential Gain Error vs DSA
Setting and Temperature at 4.9 GHz
Setting and Temperature at 4.9 GHz
25 qC 0.06
0.02 105 qC
0.04
0 0.02
0
-0.02
-0.02
-0.04 -0.04
-0.06 1TX
-0.06 2TX
-0.08 3TX
4TX
-0.08 -0.1
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Differential Phase Error = PhaseOUT(DSA Setting – 1) –
Setting = 0) + (DSA Setting) PhaseOUT(DSA Setting)
Figure 6-159. TX Calibrated Integrated Gain Error vs DSA Figure 6-160. TX Uncalibrated Differential Phase Error vs DSA
Setting and Temperature at 4.9 GHz Setting and Channel at 4.9 GHz
0.25 0.8
Uncalibrated Integrated Phase Error (deg)
Calibrated Differential Phase Error (deg)
0.2 0.7
0.15
0.6
0.1
0.05 0.5
0 0.4
-0.05 0.3
-0.1
0.2
-0.15
-0.2 1TX 3TX 0.1 1TX 3TX
2TX 4TX 2TX 4TX
-0.25 0
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
PhaseOUT(DSA Setting) Setting = 0)
Phase DNL spike may occur at any DSA setting. .
Figure 6-161. TX Calibrated Differential Phase Error vs DSA Figure 6-162. TX Uncalibrated Integrated Phase Error vs DSA
Setting and Channel at 4.9 GHz Setting and Channel at 4.9 GHz
0.2
0.06
0.15
0.04
0.1
0.05 0.02
0
0
-0.05
-0.02
-0.1
-0.15 -0.04
-0.2
-0.06
-0.25 -40qC
1TX 3TX -0.08 25qC
-0.3 2TX 4TX 105qC
-0.35 -0.1
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Differential Phase Error = PhaseOUT(DSA Setting – 1) –
Setting = 0) PhaseOUT(DSA Setting)
Figure 6-163. TX Calibrated Integrated Phase Error vs DSA Figure 6-164. TX Uncalibrated Differential Phase Error vs DSA
Setting and Channel at 4.9 GHz Setting and Temperature at 4.9 GHz
0.1 Uncalibrated Integrated Phase Error (deg) 0.8
Calibrated Differential Phase Error (deg)
0.08 0.7
0.06
0.6
0.04
0.02 0.5
0 0.4
-0.02 0.3
-0.04
0.2
-0.06 -40qC
-0.08 25qC 0.1 -40qC 105qC
105qC 25qC
-0.1 0
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – Integrated Phase Error = Phase(DSA Setting) – Phase(DSA
PhaseOUT(DSA Setting) Setting = 0)
Figure 6-165. TX Calibrated Differential Phase Error vs DSA Figure 6-166. TX Uncalibrated Integrated Phase Error vs DSA
Setting and Temperature at 4.9 GHz Setting and Temperature at 4.9 GHz
25qC 2TX
0.1 -133 3TX
4TX
Noise (dBFS/Hz)
0 -138
-0.1 -143
-0.2 -148
-0.3 -153
-158
-0.4
0 4 8 12 16 20 24 28 32 36 40
0 4 8 12 16 20 24 28 32 36 40
DSA (dB)
DSA (dB)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz, channel with the median variation over DSA setting at GHz, POUT = –13 dBFS
25°C .
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA .
Setting = 0) .
Figure 6-167. TX Calibrated Integrated Phase Error vs DSA Figure 6-168. TX Output Noise vs Channel and Attenuation at
Setting and Temperature at 4.9 GHz 2.6 GHz
-65 -64
1TX 1TX
2TX 2TX
-70 3TX -65 3TX
4TX 4TX
-75 -66
IMD3 (dBc)
IMD3 (dBc)
-80 -67
-85 -68
-90 -69
-95 -70
0 4 8 12 16 20 24 28 32 36 40 0 40 80 120 160 200 240 280 320 360 400
DSA (dB) Tone Spacing (MHz)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz, fCENTER = 4.9GHz, -13 dBFS each tone GHz, fCENTER = 4.9GHz, –13 dBFS each tone
Figure 6-169. TX IMD3 vs DSA Setting at 4.9 GHz Figure 6-170. TX IMD3 vs Tone Spacing and Channel at 4.9 GHz
-64 -55
-40 qC 1TX
25 qC -60 2TX
-65 105 qC 3TX
-65 4TX
-66
-70
IMD3 (dBc)
IMD3 (dBc)
-67 -75
-80
-68
-85
-69
-90
-70 -95
0 40 80 120 160 200 240 280 320 360 400 -37 -34 -31 -28 -25 -22 -19 -16 -13 -10 -7
Tone Spacing (MHz) Pout/tone (dBFS)
fDAC = 11796.48MSPS, interleaved mode, matching at 4.9 fDAC = 11796.48MSPS, interleaved mode, matching at 4.9
GHz, fCENTER = 4.9GHz, –13 dBFS each tone, worst channel GHz, fCENTER = 4.9GHz, fSPACING = 20 MHz
Figure 6-171. TX IMD3 vs Tone Spacing and Temperature at 4.9 Figure 6-172. TX IMD3 vs Digital Level at 4.9 GHz
GHz
-147
-149
-151
-153
-155
-157
-159
4300 4500 4700 4900 5100 5300 5500
Output Frequency (MHz)
Matching at 4.9 GHz, Single tone, fDAC = 11.79648GSPS, TM1.1, POUT_RMS = –13 dBFS
interleave mode, 40-MHz offset, DSA=0dB .
Figure 6-173. TX Single Tone Output Noise vs Frequency and Figure 6-174. TX 20-MHz LTE Output Spectrum at 4.9 GHz
Amplitude at 4.9 GHz
-52 -54
1TX 1TX
-54 2TX -56 2TX
Alternate channel ACPR (dBc)
3TX 3TX
Ajacent channel ACPR (dBc)
-60 -62
-62 -64
-64 -66
-66 -68
-68 -70
-70 -72
-32 -29 -26 -23 -20 -17 -14 -12 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12
Pout(dBFS) Pout (dBFS)
Matching at 4.9 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 4.9 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-175. TX 20-MHz LTE ACPR vs Digital Level at 4.9 GHz Figure 6-176. TX 20-MHz LTE alt-ACPR vs Digital Level at 4.9
GHz
-41 -48
1TX 1TX
-44 2TX -51 2TX
Alternate channel ACPR (dBc)
3TX 3TX
Ajacent channel ACPR (dBc)
-50 -57
-53 -60
-56 -63
-59 -66
-62 -69
-65 -72
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA (dB) DSA (dB)
Matching at 4.9 GHz, single carrier 20-MHz BW TM1.1 LTE Matching at 4.9 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 6-177. TX 20-MHz LTE ACPR vs DSA at 4.9 GHz Figure 6-178. TX 20-MHz LTE alt-ACPR vs DSA at 4.9 GHz
HD3 (dBFS/Hz)
-75 -85
-80 -90
-85 -95
-100
-90
1TX, -12dBFS 3TX, -12dBFS -105 1TX, -12dBFS 3TX, -12dBFS
-95 1TX, -6dBFS 3TX, -6dBFS 1TX, -6dBFS 3TX, -6dBFS
-110
-100 2TX, -12dBFS 4TX, -12dBFS 2TX, -12dBFS 4TX, -12dBFS
2TX, -6dBFS 4TX, -6dBFS -115 2TX, -6dBFS 4TX, -6dBFS
-105 -120
4300 4500 4700 4900 5100 5300 5500 4300 4500 4700 4900 5100 5300 5500
Output Frequency (MHz) Output Frequency (MHz)
Matching at 4.9 GHz, fDAC = 11.79648GSPS, interleave mode, Matching at 4.9 GHz, fDAC = 11.79648GSPS, interleave mode,
normalized to output power at harmonic frequency normalized to output power at harmonic frequency
Figure 6-179. TX HD2 vs Digital Amplitude and Output Figure 6-180. TX HD3 vs Digital Amplitude and Output
Frequency at 4.9 GHz Frequency at 4.9 GHz
0 0
-10 Tone = -11.5dBm -10 Tone = -5.5dBm
HD2 = -70.5dBm HD2 = -58.7dBm
-20 HD3 = -86.3dBm -20 HD3 = -68.8dBm
-30 IL2 = -89.3dBm -30 IL2 = -75.6dBm
Fs/2 = -54.2dBm Fs/2 = -54.2dBm
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50 -50
-60 -60
-70 -70
-80 -80
-90 -90
-100 -100
-110 -110
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Output Frequency (MHz) Output Frequency (MHz)
fDAC = 11796.48MSPS, interleave mode, 4.9 GHz matching, fDAC = 11796.48MSPS, interleave mode, 4.9 GHz matching,
includes PCB and cable losses. ILn = fS/n ± fOUT. includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-181. TX Single Tone (–12 dBFS) Output Spectrum at Figure 6-182. TX Single Tone (–6 dBFS) Output Spectrum at 4.9
4.9 GHz (0-fDAC) GHz (0-fDAC)
10
0 Tone = -0.5dBm
HD2 = -48.1dBm
-10 HD3 = -52.2dBm
-20 IL2 = -69.9dBm
Fs/2 = -54.7dBm
Amplitude (dBm)
-30
-40
-50
-60
-70
-80
-90
-100
-110
0 2000 4000 6000 8000 10000 12000
Output Frequency (MHz)
fDAC = 11796.48MSPS, interleave mode, 4.9 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 6-183. TX Single Tone (–1 dBFS) Output Spectrum at 4.9 GHz (0-fDAC)
0 0
1TX 1TX
-1 2TX -5 2TX
-2 3TX 3TX
4TX -10 4TX
Output Power (dBm)
-8 -35
-9 -40
-10 -45
7200 7400 7600 7800 8000 8200 8400 8600 8800 9000 0 5 10 15 20 25 30 35 40
Output Frequency (MHz) DSA Setting (dB)
includes PCB and cable losses. includes PCB and cable losses.
Figure 6-184. TX Output Power vs Frequency at 8.11 GHz Figure 6-185. TX Output Power vs DSA Setting at 8.11 GHz
Uncalibrated Amplitude Differential Nonlinearity (dB)
0
1TX 0.1
-1 2TX
3TX 0.08
-2
4TX 0.06
Output Power (dBm)
-3
0.04
-4
0.02
-5
0
-6
-0.02
-7
-0.04
-8 1TX
-0.06 2TX
-9 3TX
-0.08
-10 4TX
-40 -20 0 20 40 60 80 100 120 -0.1
Temperature (C) 0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB)
includes PCB and cable losses.
.
Figure 6-186. TX Output Power vs Temperature at 8.11 GHz
Figure 6-187. TX DSA Uncalibrated Amplitude Differential
Nonlinearity at 8.11 GHz
Uncalibrated Amplitude Differential Nonlinearity (dB)
Calibrated Amplitude Differential Nonlinearity (dB)
0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0 0
-0.02 -0.02
-0.04 -0.04
1TX -0.06
-0.06 2TX -40C
3TX -0.08 25C
-0.08 110C
4TX
-0.1 -0.1
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB) DSA Setting (dB)
Figure 6-188. TX DSA Calibrated Amplitude Differential Figure 6-189. TX DSA Uncalibrated Amplitude Differential
Nonlinearity at 8.11 GHz Nonlinearity at 8.11 GHz
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06 -40C
-0.08 25C
110C
-0.1
0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB)
.
Figure 6-191. TX DSA Uncalibrated Amplitude Integrated
Figure 6-190. TX DSA Calibrated Amplitude Differential Nonlinearity at 8.11 GHz
Nonlinearity at 8.11 GHz
UnCalibrated Amplitude Integrated Nonlinearity (dB)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
1TX -0.6
-0.6 2TX -40C
3TX -0.8 25C
-0.8 110C
4TX
-1
-1
0 4 8 12 16 20 24 28 32 36 40
0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB)
DSA Setting (dB)
Figure 6-193. TX DSA Uncalibrated Amplitude Integrated
Figure 6-192. TX DSA Calibrated Amplitude Integrated
Nonlinearity at 8.11 GHz
Nonlinearity at 8.11 GHz
UnCalibrated Phase Differential Nonlinearity (deg)
0.5
1TX
0.4 2TX
0.3 3TX
4TX
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB)
Figure 6-194. TX DSA Calibrated Amplitude Integrated
Nonlinearity at 8.11 GHz Figure 6-195. TX DSA Uncalibrated Phase Differential
Nonlinearity at 8.11 GHz
0.1 0.1
0 0
-0.1 -0.1
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
-0.5
-0.5 0 4 8 12 16 20 24 28 32 36 40
0 4 8 12 16 20 24 28 32 36 40 DSA Setting (dB)
DSA Setting (dB)
.
Figure 6-196. TX DSA Calibrated Phase Differential Nonlinearity
at 8.11 GHz Figure 6-197. TX DSA Uncalibrated Phase Differntial
Uncalibrated Phase Integrated Nonlinearity (deg) Nonlinearity at 8.11 GHz
Calibrated Phase Differential Nonlinearity (deg)
0.5
2
-40C
0.4 25C
1TX
110C 1.5 2TX
0.3 3TX
0.2 1 4TX
0.1
0.5
0
0
-0.1
-0.2 -0.5
-0.3
-1
-0.4
-1.5
-0.5
0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB) -2
0 4 8 12 16 20 24 28 32 36 40
. DSA Setting (dB)
Figure 6-198. TX DSA Calibrated Phase Differential Nonlinearity Figure 6-199. TX DSA Uncalibrated Phase Integrated
at 8.11 GHz Nonlinearity at 8.11 GHz
Calibrated Phase Integrated Nonlinearity (deg)
2 2
-40C
1.5 1.5 25C
110C
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 1TX -1
2TX
-1.5 3TX -1.5
4TX
-2 -2
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
DSA Setting (dB) DSA Setting (dB)
Figure 6-200. TX DSA Calibrated Phase Integrated Nonlinearity Figure 6-201. TX DSA Uncalibrated Phase Integrated
at 8.11 GHz Nonlinearity at 8.11 GHz
2 0
Calibrated Phase Integrated Nonlinearity (dB)
1.5
-20
1
Amplitude (dBm)
0.5 -40
0
-60
-0.5
-1 -80
-40C
-1.5 25C
110C -100
-2 0 2000 4000 6000 8000 10000 12000
0 4 8 12 16 20 24 28 32 36 40 Frequency (MHz)
DSA Setting (dB)
–1 dBFS
.
Figure 6-203. TX Single Tone Output Spectrum at 8.11 GHz
Figure 6-202. TX DSA Calibrated Phase Integrated Nonlinearity
at 8.11 GHz
0 0
-10
-20 -20
-30
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50
-60 -60
-70
-80 -80
-90
-100 -100
7500 7750 8000 8250 8500 8700 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
–1 dBFS –6 dBFS
Figure 6-204. TX Single Tone Output Spectrum at 8.11 GHz Figure 6-205. TX Single Tone Output Spectrum at 8.11 GHz
0 0
-10
-20 -20
-30
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50
-60 -60
-70
-80 -80
-90
-100 -100
7500 7750 8000 8250 8500 8700 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
0 0
-10
-20 -20
-30
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50
-60 -60
-70
-80 -80
-90
-100 -100
7500 7750 8000 8250 8500 8700 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
-40 -40
-50
-60 -60
-70
-80 -80
-90
-100 -100
7500 7750 8000 8250 8500 8700 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
50-MHz tone spacing, –7 dBFS each tone 50-MHz tone spacing, –12 dBFS each tone
Figure 6-210. TX Dual Tone Output Spectrum at 8.11 GHz Figure 6-211. TX Dual Tone Output Spectrum at 8.11 GHz
0 0
-10
-20 -20
-30
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50
-60 -60
-70
-80 -80
-90
-100 -100
7500 7750 8000 8250 8500 8700 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
50-MHz tone spacing, –12 dBFS each tone 50-MHz tone spacing, –30 dBFS each tone
Figure 6-212. TX Dual Tone Output Spectrum at 8.11 GHz Figure 6-213. TX Dual Tone Output Spectrum at 8.11 GHz
0 0
-10
-20 -20
-30
Amplitude (dBm)
Amplitude (dBm)
-40 -40
-50
-60 -60
-70
-80 -80
-90
-100 -100
7500 7750 8000 8250 8500 8700 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
50-MHz tone spacing, –30 dBFS each tone 50-MHz tone spacing, –60 dBFS each tone
Figure 6-214. TX Dual Tone Output Spectrum at 8.11 GHz Figure 6-215. TX Dual Tone Output Spectrum at 8.11 GHz
0 -40
1TX
-10
-45 2TX
-20 3TX
-50 4TX
-30
Amplitude (dBm)
-40 -55
IMD3 (dBc)
-50
-60
-60
-65
-70
-80 -70
-90
-75
-100
7500 7750 8000 8250 8500 8700 -80
Frequency (MHz) -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5
Digital Amplitude per Tone (dBFS)
50-MHz tone spacing, –60 dBFS each tone
. 50-MHz tone spacing
Figure 6-216. TX Dual Tone Output Spectrum at 8.11 GHz Figure 6-217. TX IMD3 vs Digital Amplitude at 8.11 GHz
-40 -40
-40C 1TX, -13dBFS 1TX, -7dBFS
-45 25C -45 2TX, -13dBFS 2TX, -7dBFS
110C 3TX, -13dBFS 3TX, -7dBFS
-50 -50 4TX, -13dBFS 4TX, -7dBFS
-55 -55
IMD3 (dBc)
IMD3 (dBc)
-60 -60
-65 -65
-70 -70
-75 -75
-80 -80
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40
Digital Amplitude per Tone (dBFS)
DSA Setting (dB)
50-MHz tone spacing 50-MHz tone spacing
Figure 6-218. TX IMD3 vs Digital Amplitude at 8.11 GHz Figure 6-219. TX IMD3 vs DSA Setting at 8.11 GHz
-40 -60
-13dBFS, -40C -7dBFS, -40C
-45 -13dBFS, 25C -7dBFS, 25C -65
-13dBFS, 110C -7dBFS, 110C
-50 -70
-60 -80
-65 -85
Figure 6-220. TX IMD3 vs DSA Setting at 8.11 GHz Figure 6-221. TX 2-Tone SFDR vs Digital Amplitude at 8.11 GHz
-140 -140
1TX -40C
-142 2TX -142 25C
NSD at 50MHz Offset (dBFS/Hz)
NSD at 50MHz Offset (dBFS/Hz)
-148 -148
-150 -150
-152 -152
-154 -154
-156 -156
-158 -158
-160
-160
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
Digital Amplitude (dBFS)
Digital Amplitude (dBFS)
50-MHz offset
50-MHz offset
Figure 6-223. TX NSD vs Digital Amplitude at 8.11 GHz
Figure 6-222. TX NSD vs Digital Amplitude at 8.11 GHz
-120 -120
1TX, -12dBFS 1TX, -1dBFS -12dBFS, -40C
-125 2TX, -12dBFS 2TX, -1dBFS -125 -12dBFS, 25C
NSD at 50MHz offset (dBFS/Hz)
NSD at 50MHz offset (dBFS/Hz)
-140 -140
-145 -145
-150 -150
-155 -155
-160
-160
0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40
DSA Setting (dB)
DSA Setting (dB)
50-MHz offset
50-MHz offset
Figure 6-225. TX NSD vs DSA Setting at 8.11 GHz
Figure 6-224. TX NSD vs DSA Setting at 8.11 GHz
-33 -33
1TX 1TX
-36 2TX -36 2TX
3TX 3TX
-39 -39 4TX
4TX
-42
-42
ACPR (dBc)
ACPR (dBc)
-45
-45
-48
-48
-51
-51
-54
-54
-57
-57
-60
-60 0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40 DSA Setting (dB)
DSA Setting (dB) .
Figure 6-226. TX NR100MHz ACPR vs DSA Setting 8.11 GHz
Figure 6-227. TX NR100MHz alt-ACPR vs DSA Setting 8.11 GHz
8
1TX
NR 100MHz Composite EVM (%rms)
7 2TX
3TX
6 4TX
0
0 5 10 15 20 25 30 35 40
DSA Setting (dB)
Figure 6-228. TX NR100MHz EVM vs DSA Setting 8.11 GHz
-4 0
1TX
-5 -1 2TX
-6 -2 3TX
4TX
Output Power (dBm)
-15 0.1
-20 0.05
-25
0
-30
-0.05
-35
-40 -0.1
-45 -0.15
-50
0 5 10 15 20 25 30 35 40 -0.2
0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB)
DSA Setting (dB)
Includes PCB and cable losses.
.
Figure 6-235. TX Output Power vs DSA Setting at 9.61 GHz
Figure 6-236. TX DSA Uncalibrated Amplitude Differential
Nonlinearity
Uncalibrated Amplitude Differential Nonlinearity (dB)
Calibrated Amplitude Differential Nonlinearity (dB)
0.2 0.2
1TX
0.15 2TX 0.15
3TX
0.1 4TX 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-40C
-0.15 -0.15 25C
110C
-0.2 -0.2
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB) DSA Setting (dB)
Figure 6-237. TX DSA Calibrated Amplitude Differential Figure 6-238. TX DSA Uncalibrated Amplitude Differential
Nonlinearity Nonlinearity
0.2
0.15
0.1
0.05
-0.05
-0.1
-40C
-0.15 25C
110C
-0.2
0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB)
Figure 6-239. TX DSA Calibrated Amplitude Differential Figure 6-240. TX DSA Uncalibrated Amplitude Integrated
Nonlinearity Nonlinearity
Uncalibrated Amplitude Integrated Nonlinearity (dB)
Calibrated Amplitude Integrated Nonlinearity (dB)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
1TX
-0.6 2TX -0.6 -40C
-0.8 3TX 25C
4TX -0.8
110C
-1 -1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB) DSA Setting (dB)
Figure 6-241. TX DSA Calibrated Amplitude Integrated Figure 6-242. TX DSA Uncalibrated Amplitude Integrated
Nonlinearity Nonlinearity
Calibrated Amplitude Integrated Nonlinearity (dB)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
1TX
-0.6 -40C -0.6 2TX
-0.8 25C -0.8 3TX
110C 4TX
-1 -1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB) DSA Setting (dB)
Figure 6-243. TX DSA Calibrated Amplitude Integrated Figure 6-244. TX DSA Uncalibrated Phase Differential
Nonlinearity Nonlinearity
0 0
-0.2
-0.5
-0.4
-1
-0.6 -40C
-0.8 25C -1.5
110C
-1 -2
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB) DSA Setting (dB)
Figure 6-247. TX DSA Calibrated Phase Differential Nonlinearity Figure 6-248. TX DSA Uncalibrated Phase Integrated
Nonlinearity
Calibrated Phase Differential Nonlinearity (deg)
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6 -40C
-0.8 25C
110C
-1
0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB)
Figure 6-249. TX DSA Calibrated Phase Integrated Nonlinearity Figure 6-250. TX DSA Uncalibrated Phase Integrated
Nonlinearity
-40
Calibrated Phase Integrated Nonlinearity (deg)
2
-40C -50
1.5 25C
110C -60
1
0 -90
-100
-0.5
-110
-1 1TX (dBc) 1TX (dBFS)
-120 2TX (dBc) 2TX (dBFS)
-1.5 -130 3TX (dBc) 3TX (dBFS)
4TX (dBc) 4TX (dBFS)
-2 -140
0 2 4 6 8 10 12 14 16 18 20 22 24 26 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5
DSA Setting (dB) Tone Amplitude (dBFS)
Figure 6-251. TX DSA Calibrated Amplitude Integrated Figure 6-252. TX IMD3 vs Digital Amplitude at 9.61 GHz
Nonlinearity
-40 -50
-50
-55
-60
-60
IMD3 (dBc or dBFS)
-70
-80 -65
IMD3 (dBc)
-90 -70
-100
-75
-110
-80 -13dBFS, 1TX -7dBFS, 1TX
-120 -40 (C, dBc) -40 (C, dBFS) -13dBFS, 2TX -7dBFS, 2TX
-130 25 (C, dBc) 25 (C, dBFS) -85 -13dBFS, 3TX -7dBFS, 3TX
110 (C, dBc) 110 (C, dBFS) -13dBFS, 4TX -7dBFS, 4TX
-140 -90
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40
Tone Amplitude (dBFS) DSA Setting (dB)
50-MHz tone spacing 50-MHz tone spacing
Figure 6-253. TX IMD3 vs Digital Amplitude at 9.61 GHz Figure 6-254. TX IMD3 vs DSA Setting at 9.61 GHz
-50 -50
-55 -55
-60 -60
-65 -65
IMD3 (dBc)
IMD3 (dBc)
-70 -70
-75 -75
-60 -50
-62
-55
-64
-66
-60
IMD3 (dBc)
IMD3 (dBc)
-68
-70 -65
-72
-70
-74
1TX
-76 2TX -60dBFS per tone
-75
-78 3TX -30dBFS per tone
4TX -13dBFS per tone
-80 -80
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Tone Spacing (MHz) Tone Spacing (MHz)
Figure 6-257. TX IMD3 vs Tone Spacing at 9.61 GHz Figure 6-258. TX IMD3 vs Tone Spacing at 9.61 GHz
-60 -144
-40C 1TX
-61 25C -145 2TX
-62 110C -146 3TX
4TX
-63 -147
NSD (dBFS/Hz)
IMD3 (dBc)
-64 -148
-65 -149
-66 -150
-67 -151
-68 -152
-69 -153
-70 -154
0 100 200 300 400 500 600 700 800 900 1000 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
Tone Spacing (MHz) Digital Amplitude (dBFS)
Figure 6-259. TX IMD3 vs Tone Spacing at 9.61 GHz Figure 6-260. TX NSD vs Digital Amplitude at 9.61 GHz
-144
-40C
-145 25C
-146 110C
-147
NSD (dBFS/Hz)
-148
-149
-150
-151
-152
-153
-154
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
Digital Amplitude (dBFS)
Figure 6-261. TX NSD vs Digital Amplitude at 9.61 GHz Figure 6-262. TX NSD vs DSA Setting at 9.61 GHz
-120 -120
1TX -40C
2TX 25C
-125 3TX -125 110C
4TX
-130 -130
NSD (dBFS/Hz)
NSD (dBFS/Hz)
-135 -135
-140 -140
-145 -145
-150 -150
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
DSA Setting (dB) DSA Setting (dB)
Figure 6-263. TX NSD vs DSA Setting at 9.61 GHz Figure 6-264. TX NSD vs DSA Setting at 9.61 GHz
-60 0
1TX
-65 2TX
3TX -20
-70 4TX
2-tone SFDR (dBFS)
Amplitude (dBm)
-75 -40
-80
-60
-85
-90
-80
-95
-100
-100
0 2000 4000 6000 8000 10000 12000
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5
Frequency (MHz)
Tone Amplitude (dBFS)
Includes PCB and cable losses.
50-MHz tone spacing
Figure 6-266. TX Single Tone Spectrum at 9.61 GHz and -1dBFS
Figure 6-265. TX 2-tone SFDR vs Digital Amplitude at 9.61 GHz
(wideband)
0 0
-10
-20
-20
-30
-40
Amplitude (dBm)
Amplitude (dBm)
-50 -40
-60
-70 -60
-80
-90
-80
-100
-110
-120 -100
9000 9200 9400 9600 9800 10000 10200 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
Includes PCB and cable losses. Includes PCB and cable losses.
Figure 6-267. TX Single Tone Spectrum at 9.61 GHz and -1dBFS Figure 6-268. TX Single Tone Spectrum at 9.61 GHz and -6dBFS
(1.2GHz BW) (wideband)
-20
Amplitude (dBm)
-40
-60
-80
-100
0 2000 4000 6000 8000 10000 12000
Frequency (MHz)
Includes PCB and cable losses. Includes PCB and cable losses.
Figure 6-269. TX Single Tone Spectrum at 9.61 GHz and -6dBFS Figure 6-270. TX Single Tone Spectrum at 9.61 GHz and
(1.2GHz BW) -12dBFS (wideband)
0 0
-10
-20
-20
-30
-40
Amplitude (dBm)
Amplitude (dBm)
-50 -40
-60
-70 -60
-80
-90
-80
-100
-110
-120 -100
9000 9200 9400 9600 9800 10000 10200 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
Includes PCB and cable losses. Includes PCB and cable losses, 50-MHz tone spacing.
Figure 6-271. TX Single Tone Spectrum at 9.61 GHz and Figure 6-272. TX 2-Tone Spectrum at 9.61 GHz and -7dBFS
-12dBFS (1.2GHz BW) (wideband)
0 0
-10
-20
-20
-30
-40
Amplitude (dBm)
Amplitude (dBm)
-50 -40
-60
-70 -60
-80
-90
-80
-100
-110
-120 -100
9000 9200 9400 9600 9800 10000 10200 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
Includes PCB and cable losses, 50-MHz tone spacing. Includes PCB and cable losses, 50-MHz tone spacing.
Figure 6-273. TX 2-Tone Spectrum at 9.61 GHz and -7dBFS Figure 6-274. TX 2-Tone Spectrum at 9.61 GHz and -13dBFS
(1.2GHz BW) (wideband)
0 0
-10
-20
-20
-30
-40
Amplitude (dBm)
Amplitude (dBm)
-50 -40
-60
-70 -60
-80
-90
-80
-100
-110
-120 -100
9000 9200 9400 9600 9800 10000 10200 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
Includes PCB and cable losses, 50-MHz tone spacing. Includes PCB and cable losses, 50-MHz tone spacing.
Figure 6-275. TX 2-Tone Spectrum at 9.61 GHz and -13dBFS Figure 6-276. TX 2-Tone Spectrum at 9.61 GHz and -30dBFS
(1.2GHz BW) Each (wideband)
0 0
-10
-20
-20
-30
-40
Amplitude (dBm)
Amplitude (dBm)
-50 -40
-60
-70 -60
-80
-90
-80
-100
-110
-120 -100
9000 9200 9400 9600 9800 10000 10200 0 2000 4000 6000 8000 10000 12000
Frequency (MHz) Frequency (MHz)
Includes PCB and cable losses, 50-MHz tone spacing. Includes PCB and cable losses, 50-MHz tone spacing.
Figure 6-277. TX 2-Tone Spectrum at 9.61 GHz and -30dBFS Figure 6-278. TX 2-Tone Spectrum at 9.61 GHz and -60dBFS
Each (1.2GHz BW) Each (wideband)
0 -80
-10
-20 -90
Additive Phase Noise (dBc/Hz)
-30
-100
-40
Amplitude (dBm)
-50 -110
-60
-70 -120
-80
-130
-90
-100
-140
-110
-120 -150
9000 9200 9400 9600 9800 10000 10200 102 103 104 105 106 107 108
Frequency (MHz) Offset Frequency (Hz)
Includes PCB and cable losses, 50-MHz tone spacing. Single sideband, external clock mode, input clock phase noise
. removed
Figure 6-279. TX 2-Tone Spectrum at 9.61 GHz and -60dBFS Figure 6-280. TX Additive Phase Noise vs Offset Frequency at
Each (1.2GHz BW) 9.61 GHz
-25
1TX
-30 2TX
3TX
4TX
NR 100MHz ACPR (dBc)
-35
-40
-45
-50
-55
-60
0 5 10 15 20 25 30 35 40
DSA Setting (dB)
Figure 6-281. TX NR100MHz ACPR vs DSA Setting at 9.61 GHz Figure 6-282. TX NR100MHz alt-ACPR vs DSA Setting at 9.61
GHz
8
1TX
NR 100MHz Composite EVM (%rms)
7 2TX
3TX
6 4TX
0
0 5 10 15 20 25 30 35 40
DSA Setting (dB)
Figure 6-283. TX NR100MHz EVM vs DSA Setting at 9.61 GHz
Note
Includes PCB and cable losses.
0 0.04
0.01
Input FS (dB)
-0.2 -0.02
-0.05
-0.4
-0.08
-0.6 -0.11
1RX
-0.14 2RX
-0.8 3RX
-0.17
4RX
-1 -0.2
700 800 900 1000 1100 -40 -30 -20 -10 0 10 20 30 40 50 60 70
Output Frequency (MHz) Temperature (qC)
With 0.8 GHz matching, normalized to 830 MHz With 0.8 GHz matching, normalized to fullscale at 25°C for
. each channel
Figure 6-287. RX In-Band Gain Flatness for Channel 1RX, fIN = Figure 6-288. RX Input Fullscale vs Temperature and Channel at
830 MHz 800MHz
4
3 0.15
2
0.1
1
0 0.05
-1
1RX 0
-2 2RX
3RX -0.05
-3
4RX
-4 -0.1
-40 -30 -20 -10 0 10 20 30 40 50 60 70 0 5 10 15 20 25
Temperature (qC) DSA (dB)
With 0.8 GHz matching, normalized to phase at 25°C With 0.8 GHz matching
. Differential Amplitude Error = PIN(DSA Setting – 1) – PIN(DSA
. Setting) + 1
Figure 6-289. RX Input Phase vs Temperature and DSA at fOUT = Figure 6-290. RX Uncalibrated Differential Amplitude Error vs
0.8 GHz DSA Setting at 0.8 GHz
0.03 2.7
1RX 3RX
Uncalibrated Integrated Gain Error (dB)
Calibrated Differential Gain Error (dB)
0.025 2.4
2RX 4RX
0.02
2.1
0.015
1.8
0.01
0.005 1.5
0 1.2
-0.005
0.9
-0.01
0.6 1RX
-0.015 2RX
0.3 3RX
-0.02
4RX
-0.025 0
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
0.06
0.04 0
0.02
0 -0.2
-0.02
-0.04 -0.4
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
Figure 6-293. RX Calibrated Integrated Amplitude Error vs DSA Figure 6-294. RX Uncalibrated Differential Phase Error vs DSA
Setting at 2.6 GHz Setting at 0.8 GHz
1RX 3RX
0.4 2RX 4RX 0.9
0.3
0.6
0.2
0.3
0.1
0
0
-0.3
-0.1
-0.6
-0.2
0.2 -40
-50
0 -60
-70
-0.2 -80
-90
-0.4 -100
-110
-0.6 -120
0 5 10 15 20 25 -250 -200 -150 -100 -50 0 50 100 150 200 250
DSA (dB) Output Frequency (MHz)
With 0.8 GHz matching With 0.8 GHz matching, fIN = 840 MHz, AIN= –3 dBFS
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA .
Setting = 0) .
Figure 6-297. RX Calibrated Integrated Phase Error vs DSA Figure 6-298. RX Output FFT at 0.8 GHz
Setting at 0.8 GHz
-153.8 -147
DSA = 4dB -40 qC, DSA = 4dB
-154 -148
DSA = 12dB -40 qC, DSA = 12dB
-154.2 -149 25 qC, DSA = 4dB
25 qC, DSA = 12dB
-154.4 110 qC, DSA = 4dB
-150
Noise (dBFS/Hz)
Noise (dBFS/Hz)
-155.8 -156
-156 -157
-40 -25 -10 5 20 35 50 65 80 95 110 -30 -25 -20 -15 -10 -5 0
Temperature (qC) Input Amplitude (dBFS)
With 0.8 GHz matching, 12.5-MHz offset from tone With 0.8 GHz matching, DSA Setting = 12 dB, 12.5-MHz offset
. from tone
Figure 6-299. RX Noise Spectral Density vs Temperature at 0.8 Figure 6-300. RX Noise Spectral Density vs Input Amplitude and
GHz Temperature at 0.8 GHz
IMD3 (dBFS)
-151
-88
-152
-90
-153
-92
-154
-155 -94
-156 -96
-157 -98
-30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16
Input Amplitude (dBFS) DSA (dB)
With 0.8 GHz matching, 12.5-MHz offset from tone With 0.8 GHz matching, each tone –7 dBFS, tone spacing =
. 20 MHz
Figure 6-301. RX Noise Spectral Density vs Input Amplitude and Figure 6-302. RX IMD3 vs DSA Setting and Temperature at 0.8
Channel at 0.8 GHz GHz
-90 -86
-40 qC
-92 -90 25 qC
-94 110qC
-94
-96
q -98
-40 C
IMD3 (dBFS)
IMD5 (dBFS)
-98 25 qC -102
-100 110qC
-106
-102
-110
-104
-106 -114
-108 -118
-110 -122
0 2 4 6 8 10 12 14 16 -36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6
DSA (dB) Input Amplitude (dBFS)
With 0.8 GHz matching, each tone –7 dBFS, tone spacing = With 0.8 GHz matching, tone spacing = 20 MHz, DSA = 4 dB
20 MHz .
Figure 6-303. RX IMD5 vs DSA Setting and Temperature at 0.8 Figure 6-304. RX IMD3 vs Input Level and Temperature at 0.8
GHz GHz
-85 -85
-40 qC -40 qC
-90 25 qC -90 25 qC
110qC 110qC
-95 -95
IMD3 (dBFS)
IMD5 (dBFS)
-100 -100
-105 -105
-110 -110
-115 -115
-120 -120
-30 -27 -24 -21 -18 -15 -12 -9 -6 -36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 0.8 GHz matching, tone spacing = 20 MHz, DSA = 12 dB With 0.8 GHz matching, tone spacing = 20 MHz, DSA = 12 dB
Figure 6-305. RX IMD3 vs Input Level and Temperature at 0.8 Figure 6-306. RX IMD5 vs Input Level and Temperature at 0.8
GHz GHz
HD2 (dBc)
-72
-75
-75
-80
-78
-85
-81
-90 -84
-95 -87
3 6 9 12 15 18 3 6 9 12 15 18
DSA (dB) DSA (dB)
With 0.8 GHz matching, measured after HD2 trim, DDC With 0.8 GHz matching, measured after HD2 trim, DDC
bypass mode (TI only mode for characterization) bypass mode (TI only mode for characterization)
Figure 6-307. RX HD2 vs DSA Setting and Channel at 0.8 GHz Figure 6-308. RX HD2 vs DSA Setting and Temperature at 0.8
GHz
-61 -69
-40 qC, DSA=4dB 25 qC, DSA=12dB 1RX 3RX
-66 -40 qC, DSA=12dB 110 qC, DSA=4dB 2RX 4RX
25 qC, DSA=4dB 110 qC, DSA=12dB -74
-71
HD2 (dBFS)
HD3 (dBc)
-79
-76
-81
-84
-86
-89
-91
-96 -94
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 3 5 7 9 11 13 15 17 18
Input Amplitude (dBFS) DSA (dB)
With 0.8 GHz matching, measured after HD2 trim, DDC With 0.8 GHz matching, DDC bypass mode (TI only mode for
bypass mode (TI only mode for characterization) characterization)
Figure 6-309. RX HD2 vs Input Level and Temperature at 0.8 Figure 6-310. RX HD3 vs DSA Setting and Channel at 0.8 GHz
GHz
-69 -70
-40qC 1RX 3RX
25qC -75 2RX 4RX
-72 110qC
-80
-75 -85
HD3 (dBFS)
HD3 (dBc)
-90
-78
-95
-81 -100
-105
-84
-110
-87 -115
3 6 9 12 15 18 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0
DSA (dB) Input Amplitude (dBFS)
With 0.8 GHz matching, DDC bypass mode (TI only mode for With 0.8 GHz matching, DDC bypass mode (TI only mode for
characterization) characterization)
Figure 6-311. RX HD3 vs DSA Setting and Temperature at 0.8 Figure 6-312. RX HD3 vs Input Level and Channel at 0.8 GHz
GHz
-90
-95 90
-100
-105
-110 85
-115 -40 qC, DSA=4dB 25 qC, DSA=12dB
-40 qC, DSA=12dB 110 qC, DSA=4dB
-120 25 qC, DSA=4dB 110 qC, DSA=12dB
-125 80
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 0 2 4 6 8 10 12 14 16
Input Amplitude (dBFS) DSA (dB)
With 0.8 GHz matching, DDC bypass mode (TI only mode for With 0.8 GHz matching
characterization) .
Figure 6-313. RX HD3 vs Input Level and Temperature at 0.8 Figure 6-314. RX Non-HD2/3 vs DSA Setting at 0.8 GHz
GHz
-80 -94
1RX 3RX 1RX 3RX
2RX 4RX -96 2RX 4RX
-82
-98
-84
-100
IMD3 (dBFS)
IMD5 (dBFS)
-86 -102
-88 -104
-106
-90
-108
-92
-110
-94 -112
MIN TYP MAX MIN TYP MAX
Supply Voltage Supply Voltages
With 0.8 GHz matching, –7 dBFS each tone, 20-MHz tone With 0.8 GHz matching, –7 dBFS each tone, 20-MHz tone
spacing, all supplies at MIN, TYP, or MAX recommended spacing, all supplies at MIN, TYP, or MAX recommended
operating voltages operating voltages
Figure 6-315. RX IMD3 vs Supply and Channel at 0.8 GHz Figure 6-316. RX IMD5 vs Supply and Channel at 0.8 GHz
-154
-154.2
-154.4
-154.6
NSD (dBFS)
-154.8
-155
-155.2
-155.4
-155.6
-155.8 1RX 3RX
2RX 4RX
-156
MIN TYP MAX
Supply Voltages
With 0.8 GHz matching, 12.5-MHz offset, all supplies at MIN, TYP, or MAX recommended operating voltages
Figure 6-317. RX Noise Spectral Density vs Supply and Channel at 0.8 GHz
0.1
0.2
Input FS (dB)
0
0
-0.1
-0.2
-0.2
-0.4
-0.3 1RX
2RX
-0.6 -0.4 3RX
4RX
-0.8 -0.5
1650 1750 1850 1950 2050 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Output Frequency (MHz) Temperature (qC)
With 1.8 GHz matching, normalized to 1.75 GHz With 1.8 GHz matching, normalized to fullscale at 25°C for
. each channel
Figure 6-318. RX In-Band Gain Flatness, fIN = 1750 MHz Figure 6-319. RX Input Fullscale vs Temperature and Channel at
1.75 GHz
25 0.15
15 0.05
Input Phase (degree)
10 0
5 -0.05
0 -0.1
-5 -0.15
-10 1RX -0.2
2RX
-15 3RX -0.25 1RX 3RX
4RX 2RX 4RX
-20 -0.3
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 0 5 10 15 20 25
Temperature (qC) DSA (dB)
With 2.6 GHz matching, normalized to phase at 25°C With 1.8 GHz matching
. Differential Amplitude Error = PIN(DSA Setting – 1) – PIN(DSA
. Setting) + 1
Figure 6-320. RX Input Phase vs Temperature and DSA at fIN = Figure 6-321. RX Uncalibrated Differential Amplitude Error vs
1.75 GHz DSA Setting at 1.75 GHz
0.03 0.1
1RX 3RX
Uncalibrated Integrated Gain Error (dB)
Calibrated Differential Gain Error (dB)
0.025
2RX 4RX -0.1
0.02
0.015 -0.3
0.01
0.005 -0.5
0
-0.7
-0.005
-0.01 -0.9
1RX
-0.015 2RX
-1.1 3RX
-0.02
4RX
-0.025 -1.3
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
2RX 4RX
0.012 0.5
0.01
0.008 0
0.006
0.004 -0.5
0.002
0 -1
-0.002
-0.004 -1.5
1RX 3RX
-0.006 2RX 4RX
-0.008 -2
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
Figure 6-324. RX Calibrated Integrated Amplitude Error vs DSA Figure 6-325. RX Uncalibrated Differential Phase Error vs DSA
Setting at 1.75 GHz Setting at 1.75 GHz
0.5 1
Uncalibrated Integrated Phase Error (deg)
Calibrated Differential Phase Error (deg)
0
-1
0.2
-2
-3
-0.1 -4
-5
-0.4 -6
-7
1RX -8 1RX
-0.7 2RX 2RX
-9
3RX 3RX
4RX -10 4RX
-1 -11
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
-40
0 -50
-60
-0.5 -70
-80
1RX -90
-1 2RX -100
3RX
4RX -110
-1.5 -120
0 5 10 15 20 25 -250 -200 -150 -100 -50 0 50 100 150 200 250
DSA (dB) Output Frequency (MHz)
With 1.8 GHz matching With 1.8 GHz matching, fIN = 2610 MHz, AIN= –3 dBFS
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA .
Setting = 0) .
Figure 6-328. RX Calibrated Integrated Phase Error vs DSA Figure 6-329. RX Output FFT at 1.75 GHz
Setting at 1.75 GHz
Noise (dBFS/Hz)
-149 110 qC, DSA = 12dB
-155.2 -150
-151
-155.4 -152
-153
-155.6
-154
-155.8 -155
DSA = 4dB
DSA = 12dB -156
-156 -157
-40 -25 -10 5 20 35 50 65 80 95 110 -30 -25 -20 -15 -10 -5 0
Temperature (qC) Input Amplitude (dBFS)
With 1.8 GHz matching, 12.5-MHz offset from tone With 1.8 GHz matching, DSA Setting = 12 dB, 12.5-MHz offset
. from tone
Figure 6-330. RX Noise Spectral Density vs Temperature at 1.75 Figure 6-331. RX Noise Spectral Density vs Input Amplitude and
GHz Temperature at 1.75 GHz
-145 -70
-146 1RX, DSA = 4dB -72 -40 qC
1RX, DSA = 12dB 25 qC
-147 2RX, DSA = 4dB -74 110qC
-148 2RX, DSA = 12dB -76
3RX, DSA = 4dB
Noise (dBFS/Hz)
With 1.8 GHz matching, 12.5-MHz offset from tone With 1.8 GHz matching, each tone –7 dBFS, tone spacing =
. 20 MHz
Figure 6-332. RX Noise Spectral Density vs Input Amplitude and Figure 6-333. RX IMD3 vs DSA Setting and Temperature at 1.75
Channel at 1.75 GHz GHz
-88 -80
-40 qC -40 qC
-92 25 qC -85 25 qC
110qC 110qC
-96 -90
-100 -95
IMD3 (dBFS)
IMD3 (dBFS)
-104 -100
-108 -105
-112 -110
-116 -115
-120 -120
-124 -125
-36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6 -36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 1.8 GHz matching, tone spacing = 20 MHz, DSA = 4 dB With 1.8 GHz matching, tone spacing = 20 MHz, DSA = 12 dB
Figure 6-334. RX IMD3 vs Input Level and Temperature at 1.75 Figure 6-335. RX IMD3 vs Input Level and Temperature at 1.75
GHz GHz
-85 -82
HD2 (dBc)
HD2 (dBc)
-90 -87
-95 -92
-100 -97
-105 -102
3 5 7 9 11 13 15 17 19 3 5 7 9 11 13 15 17 19
DSA (dB) DSA (dB)
With 1.8 GHz matching, fin = 1900MHz, measured after HD2 With 1.8 GHz matching, fin = 1900MHz, measured after HD2
trim, DDC bypass mode (TI only mode for characterization) trim, DDC bypass mode (TI only mode for characterization)
Figure 6-336. RX HD2 vs DSA Setting and Channel at 1.9 GHz Figure 6-337. RX HD2 vs DSA Setting and Temperature at 1.9
GHz
-75 -74
1RX, DSA=4dB 3RX, DSA=4dB -40 qC, DSA=4dB 25 qC, DSA=12dB
-80 1RX, DSA=12dB 3RX, DSA=12dB -79 -40 qC, DSA=12dB 110 qC, DSA=4dB
-85 2RX, DSA=4dB 4RX, DSA = 4dB 25 qC, DSA=4dB 110 qC, DSA=12dB
2RX, DSA=12dB 4RX, DSA = 12dB -84
-90
-89
HD2 (dBFS)
HD2 (dBFS)
-95
-100 -94
-105 -99
-110
-104
-115
-120 -109
-125 -114
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 1.8 GHz matching, fin = 1900MHz, measured after HD2 With 1.8 GHz matching, fin = 1900MHz, measured after HD2
trim, DDC bypass mode (TI only mode for characterization) trim, DDC bypass mode (TI only mode for characterization)
Figure 6-338. RX HD2 vs Input Amplitude and Channel at 1.9 Figure 6-339. RX HD2 vs Input Amplitude and Temperature at
GHz 1.9 GHz
-65 -65
1RX 3RX -40qC
-70 2RX 4RX 25qC
-70 110qC
-75
-75
-80
HD3 (dBc)
HD3 (dBc)
-85 -80
-90
-85
-95
-90
-100
-105 -95
3 5 7 9 11 13 15 17 19 3 5 7 9 11 13 15 17 19
DSA (dB) DSA (dB)
With 1.8 GHz matching, fin = 1900MHz, DDC bypass mode (TI With 1.8 GHz matching, fin = 1900MHz, DDC bypass mode (TI
only mode for characterization) only mode for characterization)
Figure 6-340. RX HD3 vs DSA Setting and Channel at 1.9 GHz Figure 6-341. RX HD3 vs DSA Setting and Temperature at 1.9
GHz
HD3 (dBFS)
-85
-80
-90
-90
-95
-100 -100
-105
-110
-110
-120 -115
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 1.8 GHz matching, fin = 1900MHz, DDC bypass mode (TI With 1.8 GHz matching, fin = 1900MHz, DDC bypass mode (TI
only mode for characterization) only mode for characterization)
Figure 6-342. RX HD3 vs Input Level and Channel at 1.9 GHz Figure 6-343. RX HD3 vs Input Level and Temperature at 1.9
GHz
95 81
1RX 3RX
80.8 2RX 4RX
90
80.6
Non HD2/3 SFDR (dBFS)
Inband SFDR (dBFS/Hz)
80.4
85
80.2
80 80
79.8
75
79.6
1RX,
2RX 79.4
70
3RX 79.2
4RX
65 79
-30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16
Input Amplitude (dBFS) DSA (dB)
NSD (dBFS)
-92 -153
-94 -153.5
-96 -154
-98 -154.5
-100 -155
-102 -155.5 1RX 3RX
2RX 4RX
-104 -156
MIN TYP MAX MIN TYP MAX
Supply Voltage Supply Voltages
With 1.8 GHz matching, –7 dBFS each tone, 20-MHz tone With 1.8 GHz matching, 12.5-MHz offset, all supplies at MIN,
spacing, all supplies at MIN, TYP, or MAX recommended TYP, or MAX recommended operating voltages
operating voltages .
Figure 6-346. RX IMD3 vs Supply and Channel at 1.75 GHz Figure 6-347. RX Noise Spectral Density vs Supply and Channel
at 1.75 GHz
1 DSA=10dB 1
DSA=12dB
0 0
-0.5 -0.5
-1 -1 1RX
2RX
-1.5 -1.5 3RX
4RX
-2 -2
2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 -40 -20 0 20 40 60 80 100 120
Input Frequency (MHz) Temperature (qC)
With matching, normalized to power at 2.6 GHz for each DSA With 2.6 GHz matching, normalized to fullscale at 25°C for
setting each channel
Figure 6-348. RX Inband Gain Flatness, fIN = 2600 MHz Figure 6-349. RX Input Fullscale vs Temperature and Channel at
2.6 GHz
10
0.1
0
-10 0
-20
-0.1
-30 DSA=0dB DSA=10dB DSA=20dB
DSA=2dB DSA=12dB DSA=22dB
-40 DSA=4dB DSA=14dB DSA=24dB -0.2
-50 DSA=6dB DSA=16dB
DSA=8dB DSA=18dB
-60 -0.3
-40 -20 0 20 40 60 80 100 120 0 2 4 6 8 10 12 14 16 18 20 22 2425
Temperature (qC) DSA Setting (dB)
With 2.6 GHz matching, normalized to phase at 25°C With 2.6 GHz matching
. Differential Amplitude Error = PIN(DSA Setting – 1) – PIN(DSA
. Setting) + 1
Figure 6-350. RX Input Phase vs Temperature and DSA at fOUT = Figure 6-351. RX Uncalibrated Differential Amplitude Error vs
2.6 GHz DSA Setting at 2.6 GHz
0.1 2
Uncalibrated Integrated Amplitude Error (dB)
Calibrated Differential Amplitude Error (dB)
1RX 1RX
0.08 2RX 1.5 2RX
0.06 3RX 3RX
4RX 1 4RX
0.04
0.02 0.5
0 0
-0.02 -0.5
-0.04
-1
-0.06
-0.08 -1.5
-0.1 -2
0 2 4 6 8 10 12 14 16 18 20 22 2425 0 2 4 6 8 10 12 14 16 18 20 22 24
DSA Setting (dB) DSA Setting (dB)
2.5 1RX
0.08 2RX
2 3RX
0.06
1.5 4RX
0.04
1
0.02 0.5
0 0
-0.02 -0.5
-1
-0.04
1RX -1.5
-0.06 2RX -2
-0.08 3RX
4RX -2.5
-0.1 -3
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 26
DSA Setting (dB) DSA Setting (dB)
8 -10 SNR=62.5dBFS
2RX
3RX -20
6
4RX -30
4
Amplitude (dBFS)
-40
2 -50
0 -60
-2 -70
-80
-4
-90
-6
-100
-8 -110
-10 -120
0 2 4 6 8 10 12 14 16 18 20 22 24 -250 250
DSA Setting (dB) Frequency (MHz)
With 2.6 GHz matching With 2.6 GHz matching, fIN = 2610 MHz, AIN= –3 dBFS
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA .
Setting = 0) .
Figure 6-358. RX Calibrated Integrated Phase Error vs DSA Figure 6-359. RX Output FFT at 2.6 GHz
Setting at 2.6 GHz
-154 -153
-154.5
-154
-155
-155 -40qC
-155.5 25qC
105qC
-156 -156
-40 -20 0 20 40 60 80 100 120 -30 -25 -20 -15 -10 -5 0
Temperature (qC) Input Amplitude (dBFS)
With 2.6 GHz matching, 12.5-MHz offset from tone With 2.6 GHz matching, DSA Setting = 12 dB, 12.5-MHz offset
. from tone
Figure 6-360. RX Noise Spectral Density vs Temperature at 2.6 Figure 6-361. RX Noise Spectral Density vs Input Amplitude and
GHz Temperature at 2.6 GHz
-146 -60
1RX, DSA=4 3RX, DSA=4 Temp=-40qC
1RX, DSA=12 3RX, DSA=12 Temp=25qC
2RX, DSA=4 4RX, DSA=4 -65 Temp=110qC
-148
2RX, DSA=12 4RX, DSA=12
-70
NSD (dBFS/Hz)
IMD3 (dBFS)
-150
-75
-152
-80
-154
-85
-156 -90
-30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16
Input Amplitude (dBFS) DSA Setting (dB)
With 2.6 GHz matching, 12.5-MHz offset from tone With 2.6 GHz matching, each tone –7 dBFS, tone spacing =
. 20 MHz
Figure 6-362. RX Noise Spectral Density vs Input Amplitude and Figure 6-363. RX IMD3 vs DSA Setting and Temperature at 2.6
Channel at 2.6 GHz GHz
-70 -75
-75 -80
-80 -85
-85 -90
IMD3 (dBFS)
IMD3 (dBFS)
-90 -95
-95 -100
-100 -105
-105 -110
-110 Temp=-40qC -115 Temp=-40qC
-115 Temp=25qC -120 Temp=25qC
Temp=110qC Temp=110qC
-120 -125
-40 -35 -30 -25 -20 -15 -10 -5 0 -40 -35 -30 -25 -20 -15 -10 -5 0
Input Level (dBFS) Input Level (dBFS)
With 2.6 GHz matching, tone spacing = 20 MHz, DSA = 4 dB With 2.6 GHz matching, tone spacing = 20 MHz, DSA = 12 dB
Figure 6-364. RX IMD3 vs Input Level and Temperature at 2.6 Figure 6-365. RX IMD3 vs Input Level and Temperature at 2.6
GHz GHz
-75 -85
HD2 (dBFS)
HD2 (dBc)
-80 -90
-85 -95
With 2.6 GHz matching, DDC bypass mode (TI only mode for With 2.6 GHz matching, DDC bypass mode (TI only mode for
characterization) characterization)
Figure 6-366. RX HD2 vs DSA Setting and Channel at 2.6 GHz Figure 6-367. RX HD2 vs Input Level and Temperature at 2.6
GHz
-60 -60
-65 -65
-70 -70
-75 -75
HD3 (dBc)
HD3 (dBc)
-80 -80
-85 -85
With 2.6 GHz matching, DDC bypass mode (TI only mode for With 2.6 GHz matching, DDC bypass mode (TI only mode for
characterization) characterization)
Figure 6-368. RX HD3 vs DSA Setting and Channel at 2.6 GHz Figure 6-369. RX HD3 vs DSA Setting and Temperature at 2.6
GHz
-60 -60
1RX Temp=-40qC
-65 2RX -65 Temp=25qC
-70 3RX -70 Temp=110qC
4RX
-75 -75
HD3 (dBFS)
HD3 (dBFS)
-80 -80
-85 -85
-90 -90
-95 -95
-100 -100
-105 -105
-110 -110
-30 -25 -20 -15 -10 -5 0 -30 -25 -20 -15 -10 -5 0
Input Amplitude (dBFS) Input Level (dBFS)
With 2.6 GHz matching, DDC bypass mode (TI only mode for With 2.6 GHz matching, DDC bypass mode (TI only mode for
characterization) characterization)
Figure 6-370. RX HD3 vs Input Level and Channel at 2.6 GHz Figure 6-371. RX HD3 vs Input Level and Temperature at 2.6
GHz
95 95
90 90
85 85
80 80 1RX
2RX
75 75 3RX
4RX
70 70
2500 2525 2550 2575 2600 2625 2650 2675 2700 2500 2525 2550 2575 2600 2625 2650 2675 2700
Input Frequency (MHz) Input Frequency (dBc)
100
95 98
90 96
85 94
92
80 1RX
2RX 90
75 3RX 88
4RX
70 86
2500 2525 2550 2575 2600 2625 2650 2675 2700 -30 -25 -20 -15 -10 -5 0
Input Frequency (MHz) Input Amplitude (dBFS)
94 94
92 92
90 90
88 88
86 86
84 84
82 82
80 80
-30 -25 -20 -15 -10 -5 0 -30 -25 -20 -15 -10 -5 0
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 2.6 GHz matching With 2.6 GHz matching, decimate by 8, DSA Setting = 12 dB
Figure 6-376. RX In-Band SFDR (±200 MHz) vs Input Amplitude Figure 6-377. RX Inband SFDR (±150 MHz) vs Input Amplitude
and Temperature at 2.6 GHz and Temperature at 2.6 GHz
-86
90
-88
85 -90
-92
80
-94
-96
75
-98
70 -100
-30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16 18
Input Amplitude (dBFS) DSA Setting (dB)
-151.5
IMD3 (dBFS)
-78
-80 -152
-82 -152.5
-84 -153
-86
-153.5
-88
-154
-90 MIN TYP MAX
MIN TYP MAX Supply Voltages
Supply Voltages
With 2.6 GHz matching, 12.5-MHz offset, all supplies at MIN,
With 2.6 GHz matching, –7 dBFS each tone, 20-MHz tone
TYP, or MAX recommended operating voltages
spacing, all supplies at MIN, TYP, or MAX recommended
.
operating voltages
Figure 6-381. RX Noise Spectral Density vs Supply and Channel
Figure 6-380. RX IMD3 vs Supply and Channel at 2.6 GHz at 2.6 GHz
1 DSA=10dB
With 3.6 GHz matching, normalized to 3.6 GHz With 3.6 GHz matching, normalized to phase at 25°C
Figure 6-382. RX In-Band Gain Flatness, fIN = 3600 MHz Figure 6-383. RX Input Phase vs Temperature at 3.6 GHz
0.5 0.1
-40qC -40qC
0.2 0.04
0.1 0.02
0 0
-0.1 -0.02
-0.2 -0.04
-0.3 -0.06
-0.4 -0.08
-0.5 -0.1
0 5 10 15 20 25 0 5 10 15 20 25
DSA Setting (dB) DSA Setting (dB)
3 0.6 105qC
2.5 0.4
2 0.2
1.5 0
1 -0.2
0.5 -0.4
0 -40qC -0.6
-0.5 25qC -0.8
105qC
-1 -1
0 5 10 15 20 25 0 5 10 15 20 25
DSA Setting (dB) DSA Setting (dB)
-0.5 -0.5
-1
-1
-1.5
-1.5 -2
-2 -2.5
0 5 10 15 20 25 0 5 10 15 20 25
DSA Setting (dB) DSA Setting (dB)
2 1
1 0.5
0 0
-1 -0.5
-2 -1
-3 -40qC -1.5
-4 25qC -2
105qC
-5 -2.5
0 5 10 15 20 25 0 5 10 15 20 25
DSA Setting (dB) DSA Setting (dB)
-40 -70
IMD3 (dBFS)
-50
-60 -75
-70
-80 -80
-90
-100 -85
-110
-120 -90
-250 250 0 2 4 6 8 10 12 14 16
Frequency (MHz) DSA Setting (dB)
With 3.6 GHz matching , fIN = 3610 MHz, AIN = –3 dBFS With 3.5 GHz matching, each tone at –7 dBFS, 20-MHz tone
. spacing
Figure 6-392. RX Output FFT at 3.6 GHz Figure 6-393. RX IMD3 vs DSA Setting and Temperature at 3.6
GHz
-85 -65
-90 -70
IMD3 (dBFS)
-95 -75
HD2 (dBc)
-100 -80
-105 -85
With 3.5 GHz matching, 20-MHz tone spacing With 3.5 GHz matching, DDC bypass mode (TI only mode for
. characterization)
Figure 6-394. RX IMD3 vs Input Level and Temperature at 3.6 Figure 6-395. RX HD2 vs DSA Setting and Channel at 3.6 GHz
GHz
-71 -70
-40qC 1RX
-74 25qC -75 2RX
110qC 3RX
-80 4RX
-77
-85
HD2 (dBFS)
HD2 (dBc)
-80
-90
-83
-95
-86
-100
-89
-105
-92
3 6 9 12 15 18 -110
DSA (dB) -30 -25 -20 -15 -10 -5 0
Input Amplitude (dBFS)
With 3.5 GHz matching, DDC bypass mode (TI only mode for
With 3.5 GHz matching, DDC bypass mode (TI only mode for
characterization)
characterization)
Figure 6-396. RX HD2 vs DSA Setting and Temperature at 3.6
Figure 6-397. RX HD2 vs Input Level and Channel at 3.6 GHz
GHz
-70 -60
Temp=-40qC
-75 Temp=25qC -65
Temp=110qC
-80 -70
-85 -75
HD2 (dBFS)
HD3 (dBc)
-90 -80
-95 -85
With 3.5 GHz matching, DDC bypass mode (TI only mode for With 3.5 GHz matching, DDC bypass mode (TI only mode for
characterization) characterization)
Figure 6-398. RX HD2 vs Input Level and Temperature at 3.6 Figure 6-399. RX HD3 vs DSA Setting and Channel at 3.6 GHz
GHz
HD3 (dBFS)
HD3 (dBc)
-70 -80
-85
-73
-90
-95
-76 1RX
-100 2RX
-105 3RX
-79 4RX
3 6 9 12 15 18 -110
DSA (dB) -30 -25 -20 -15 -10 -5 0
Input Amplitude (dBFS)
With 3.5 GHz matching, DDC bypass mode (TI only mode for
With 3.5 GHz matching, DDC bypass mode (TI only mode for
characterization)
characterization)
Figure 6-400. RX HD3 vs DSA Setting and Temperature at 3.6
Figure 6-401. RX HD3 vs Input Level and Channel at 3.6 GHz
GHz
-70 -140
Temp=-40qC 1RX, DSA=4dB 3RX, DSA=4dB
-75 Temp=25qC -142 1RX, DSA=12dB 3RX, DSA=12dB
-148
-90 -150
-95 -152
-154
-100
-156
-105 -158
-110 -160
-30 -25 -20 -15 -10 -5 0 -30 -25 -20 -15 -10 -5 0
Input Level (dBFS) Input Level (dBFS)
With 3.5 GHz matching, DDC bypass mode (TI only mode for With 3.5 GHz matching, 12.5-MHz offset from tone
characterization) .
Figure 6-402. RX HD3 vs Input Level and Temperature at 3.6 Figure 6-403. RX Noise Spectral Density vs Input Level and DSA
GHz Setting at 3.6 GHz
110 90
1RX
105 2RX
3RX 85
4RX
SFDR excl. HD2/3 (dBc)
100
In-band SFDR (dBFS)
80
95
90 75
85
70
80 1RX
65 2RX
75 3RX
4RX
70 60
-30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16 18
Input Amplitude (dBFS) DSA Setting (dB)
-70 -90
1RX
-72 2RX -92
-74 3RX -94
4RX
-76 -96
IMD5 (dBFS)
IMD3 (dBFS)
-78 -98
-80 -100
-82 -102
-84 -104
1RX
-86 -106 2RX
-108 3RX
-88
4RX
-90 -110
MIN TYP MAX MIN TYP MAX
Supply Voltages Supply Voltages
With 3.6 GHz matching, –7 dBFS each tone, 20-MHz tone With 3.6 GHz matching, –7 dBFS each tone, 20-MHz tone
spacing, all supplies at MIN, TYP, or MAX recommended spacing, all supplies at MIN, TYP, or MAX recommended
operating voltages operating voltages
Figure 6-406. RX IMD3 vs Supply Voltage and Channel at 3.6 Figure 6-407. RX IMD5 vs Supply Voltage and Channel at 3.6
GHz GHz
-152
1RX
-152.5 2RX
3RX
-153 4RX
NSD (dBFS/Hz)
-153.5
-154
-154.5
-155
-155.5
-156
MIN TYP MAX
Supply Voltages
With 3.6 GHz matching, tone at –20 dBFS, 12.5-MHz offset frequency, all supplies at MIN, TYP, or MAX recommended operating
voltages
Figure 6-408. RX Noise Spectral Density vs Supply Voltage and Channel at 3.6 GHz
DSA=10dB
0.2 DSA=12dB 0.1
DSA=14dB -0.2
Input FS (dB)
0 -0.5
-0.8
-0.2
-1.1
-0.4 -1.4
1RX
-1.7 2RX
-0.6 3RX
-2
4RX
-0.8 -2.3
4700 4800 4900 5000 5100 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Output Frequency (MHz) Temperature (qC)
With matching, normalized to power at 4.9GHz for each DSA With 4.9 GHz matching, normalized to fullscale at 25°C for
setting each channel
Figure 6-409. RX Inband Gain Flatness, fIN = 4900 MHz Figure 6-410. RX Input Fullscale vs Temperature and Channel at
4.9 GHz
65 0.15
55 Uncalibrated Differential Gain Error (dB) 0.1
45
0.05
Input Phase (degree)
35
25 0
15 -0.05
5
-0.1
-5
1RX -0.15 1RX
-15 2RX 2RX
-25 3RX -0.2 3RX
4RX 4RX
-35 -0.25
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 0 5 10 15 20 25
Temperature (qC) DSA (dB)
With 4.9 GHz matching, normalized to phase at 25°C With 4.9 GHz matching
. Differential Amplitude Error = PIN(DSA Setting – 1) – PIN(DSA
. Setting) + 1
Figure 6-411. RX Input Phase vs Temperature and DSA at fOUT = Figure 6-412. RX Uncalibrated Differential Amplitude Error vs
4.9 GHz DSA Setting at 4.9 GHz
0.03 1.2
1RX 3RX 1RX
Uncalibrated Integrated Gain Error (dB)
Calibrated Differential Gain Error (dB)
0.025 1
2RX 4RX 2RX
0.02 3RX
0.8 4RX
0.015
0.6
0.01
0.005 0.4
0 0.2
-0.005
0
-0.01
-0.2
-0.015
-0.02 -0.4
-0.025 -0.6
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
2RX 1.5
0.04
3RX
4RX 1
0.03
0.5
0.02 0
0.01 -0.5
-1
0
-1.5 1RX
2RX
-0.01 -2 3RX
4RX
-0.02 -2.5
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
Figure 6-415. RX Calibrated Integrated Amplitude Error vs DSA Figure 6-416. RX Uncalibrated Differential Phase Error vs DSA
Setting at 4.9 GHz Setting at 4.9 GHz
1.5 3
Uncalibrated Integrated Phase Error (deg)
Calibrated Differential Phase Error (deg)
1 2
0.5 1
0 0
-0.5 -1
-1 -2
-1.5 -3
-2 1RX -4 1RX
2RX 2RX
-2.5 3RX -5 3RX
4RX 4RX
-3 -6
0 5 10 15 20 25 0 5 10 15 20 25
DSA (dB) DSA (dB)
-40
-0.5
-50
-1 -60
-70
-1.5
-80
-2 1RX -90
2RX -100
-2.5 3RX -110
4RX
-3 -120
0 5 10 15 20 25 -250 -200 -150 -100 -50 0 50 100 150 200 250
DSA (dB) Output Frequency (MHz)
With 4.9 GHz matching With 4.9 GHz matching, fIN = 4910 MHz, AIN= –3 dBFS
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA .
Setting = 0) .
Figure 6-419. RX Calibrated Integrated Phase Error vs DSA Figure 6-420. RX Output FFT at 4.9 GHz
Setting at 4.9 GHz
Noise (dBFS/Hz)
-155.2 -149 110 qC, DSA = 12dB
-150
-155.4 -151
-152
-155.6 -153
-154
-155.8 -155
-156
-156 -157
-40 -25 -10 5 20 35 50 65 80 95 110 -30 -25 -20 -15 -10 -5 0
Temperature (qC) Input Amplitude (dBFS)
With 4.9 GHz matching, 12.5-MHz offset from tone With 4.9 GHz matching, DSA Setting = 12 dB, 12.5-MHz offset
. from tone
Figure 6-421. RX Noise Spectral Density vs Temperature at 4.9 Figure 6-422. RX Noise Spectral Density vs Input Amplitude and
GHz Temperature at 4.9 GHz
-145 -64
-146 1RX, DSA = 4dB -40 qC
1RX, DSA = 12dB 25 qC
-147 2RX, DSA = 4dB -69 110qC
-148 2RX, DSA = 12dB
3RX, DSA = 4dB
Noise (dBFS/Hz)
With 4.9 GHz matching, 12.5-MHz offset from tone With 4.9 GHz matching, each tone –7 dBFS, tone spacing =
. 20 MHz
Figure 6-423. RX Noise Spectral Density vs Input Amplitude and Figure 6-424. RX IMD3 vs DSA Setting and Temperature at 4.9
Channel at 4.9 GHz GHz
-80 -75
-40 qC -40 qC
-85 25 qC -80 25 qC
-90 110qC -85 110qC
-95 -90
IMD3 (dBFS)
IMD3 (dBFS)
-100 -95
-105 -100
-110 -105
-115 -110
-120 -115
-125 -120
-130 -125
-36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6 -36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 4.9 GHz matching, tone spacing = 20 MHz, DSA = 4 dB With 4.9 GHz matching, tone spacing = 20 MHz, DSA = 12 dB
Figure 6-425. RX IMD3 vs Input Level and Temperature at 4.9 Figure 6-426. RX IMD3 vs Input Level and Temperature at 4.9
GHz GHz
HD2 (dBc)
-80
-82 -82
-84
-85
-86
-88 -88
-90
-91
-92
-94 -94
0 2 4 6 8 10 12 14 16 3 6 9 12 15 18
DSA (dB) DSA (dB)
With 4.9 GHz matching, measured after HD2 trim, DDC With 4.9 GHz matching, measured after HD2 trim, DDC
bypass mode (TI only mode for characterization) bypass mode (TI only mode for characterization)
Figure 6-427. RX HD2 vs DSA Setting and Channel at 4.9 GHz Figure 6-428. RX HD2 vs DSA and Temperature at 4.9 GHz
-72 -62
-75 -40 qC 1RX
25 qC -64 2RX
-78
110qC -66 3RX
-81 4RX
-84 -68
-87
HD2 (dBFS)
HD3 (dBc)
-70
-90
-93 -72
-96
-74
-99
-102 -76
-105 -78
-108
-80
-111
-114 -82
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 -1 3 5 7 9 11 13 15 17 19
Input Amplitude (dBFS) DSA (dB)
With 4.9 GHz matching, measured after HD2 trim, DDC With 4.9 GHz matching, DDC bypass mode (TI only mode for
bypass mode (TI only mode for characterization) characterization)
Figure 6-429. RX HD2 vs Input Level and Temperature at 4.9 Figure 6-430. RX HD3 vs DSA Setting and Channel at 4.9 GHz
GHz
-62 -65
-40qC 1RX 3RX
25qC -70 2RX 4RX
-65 110qC
-75
-68 -80
HD3 (dBFS)
HD3 (dBc)
-85
-71
-90
-74 -95
-100
-77
-105
-80 -110
3 6 9 12 15 18 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 -1
DSA (dB) Input Amplitude (dBFS)
With 4.9 GHz matching, DDC bypass mode (TI only mode for With 4.9 GHz matching, DDC bypass mode (TI only mode for
characterization) characterization)
Figure 6-431. RX HD3 vs DSA Setting and Temperature at 4.9 Figure 6-432. RX HD3 vs Input Level and Channel at 4.9 GHz
GHz
-84 87
-87 84
-90 81
-93 78
-96
75
-99
-102 72
-105 69
-108 66
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 -1 -30 -27 -24 -21 -18 -15 -12 -9 -6
Input Amplitude (dBFS) Input Amplitude (dBFS)
With 4.9 GHz matching, DDC bypass mode (TI only mode for With 4.9 GHz matching, decimate by 3
characterization) .
Figure 6-433. RX HD3 vs Input Level and Temperature at 4.9 Figure 6-434. RX In-Band SFDR (±400 MHz) vs Input Amplitude
GHz and Channel at 4.9 GHz
83 -70
1RX 3RX -72 1RX 3RX
82.5 2RX 4RX 2RX 4RX
-74
Non HD2/3 SFDR (dBFS)
82 -76
-78
81.5
IMD3 (dBFS)
-80
-82
81
-84
80.5 -86
-88
80
-90
79.5 -92
-94
79 -96
0 2 4 6 8 10 12 14 16 MIN TYP MAX
DSA (dB) Supply Voltage
With 4.9 GHz matching With 4.9 GHz matching, –7 dBFS each tone, 20-MHz tone
. spacing, all supplies at MIN, TYP, or MAX recommended
. operating voltages
Figure 6-435. RX Non-HD2/3 vs DSA Setting at 4.9 GHz Figure 6-436. RX IMD3 vs Supply and Channel at 4.9 GHz
-151
-151.5
-152
-152.5
NSD (dBFS)
-153
-153.5
-154
-154.5
-155
-155.5 1RX 3RX
2RX 4RX
-156
MIN TYP MAX
Supply Voltages
With 4.9 GHz matching, 12.5-MHz offset, all supplies at MIN, TYP, or MAX recommended operating voltages
Figure 6-437. RX Noise Spectral Density vs Supply and Channel at 4.9 GHz
Amplitude (dB)
-2 -2
-3 -3
-4 -4
-5 -5
1RX DSA = 0dB DSA = 16dB
-6 2RX -6 DSA = 4dB DSA = 20dB
-7 3RX -7 DSA = 8dB DSA = 24dB
4RX DSA = 12dB
-8 -8
7400 7600 7800 8000 8200 8400 8600 8800 7400 7600 7800 8000 8200 8400 8600 8800
Input Frequency (MHz) Input Frequency (MHz)
0.2
-2
-3 0
-4 -0.2
-5
DSA = 0dB DSA = 16dB -0.4
-6 DSA = 4dB DSA = 20dB no cal, -40C after cal, -40C
DSA = 8dB DSA = 24dB -0.6 no cal, 25C after cal, 25C
-7
DSA = 12dB no cal, 110C after cal, 110C
-8 -0.8
7400 7600 7800 8000 8200 8400 8600 8800 0 2 4 6 8 10 12 14 16 18 20 22 2425
Input Frequency (MHz) DSA Setting (dB)
4
3
2
1
0
-1
-2
-3 no cal, -40C after cal, -40C
-4 no cal, 25C after cal, 25C
no cal, 110C after cal, 110C
-5
0 2 4 6 8 10 12 14 16 18 20 22 2425
DSA Setting (dB)
Figure 6-442. RX Amplitude Integrated Nonlinearity at 8.11GHz Figure 6-443. RX Phase Differential Nonlinearity at 8.11GHz
IMD3 (dBFS)
2
0 -90
-2
-100
-4
-6 -110
-8
-10 -120
0 2 4 6 8 10 12 14 16 18 20 22 2425 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
DSA Setting (dB) Input Amplitude per Tone (dBFS)
-65
IMD3 (dBFS)
-70
-75
-80
-85
-90
-95
-100
0 2 4 6 8 10 12 14 16 18 20
DSA Setting (dB)
-150
-151
-152
-153
-154
. -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
Input Amplitude (dBFS)
Figure 6-448. RX NSD vs Digital Amplitude at 8.11GHz
Figure 6-449. RX NSD vs Digital Amplitude at 8.11GHz
-70
-100
-80
-105
-90
-110
-115 -100
-120 -110
-60 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 18 20
Input Amplitude (dBFS) DSA Setting (dB)
Figure 6-452. RX HD2 vs Digital Amplitude at 8.11GHz Figure 6-453. RX HD2 vs DSA Setting at 8.11GHz
-80
-40C
-85 25C
110C
-90
-95
HD3 (dBFS)
-100
-105
-110
-115
-120
-60 -50 -40 -30 -20 -10 0
Input Amplitude (dBFS)
Figure 6-454. RX HD3 vs Digital Amplitude at 8.11GHz Figure 6-455. RX HD3 vs DSA Setting at 8.11GHz
-80
2-tone SFDR (dBFS)
Amplitude (dBFS)
-40
-82.5
-85
-60
-87.5
-90 -80
-92.5
-95 -100
-97.5
-100 -120
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 -750 -500 -250 0 250 500 750
Digital Amplitude per Tone (dBFS) Frequency (MHz)
-20 -20
Amplitude (dBFS)
Amplitude (dBFS)
-40 -40
-60 -60
-80 -80
-100 -100
-120 -120
-750 -500 -250 0 250 500 750 -750 -500 -250 0 250 500 750
Frequency (MHz) Frequency (MHz)
-20 -20
Amplitude (dBFS)
Amplitude (dBFS)
-40 -40
-60 -60
-80 -80
-100 -100
-120 -120
-750 -500 -250 0 250 500 750 -750 -500 -250 0 250 500 750
Frequency (MHz) Frequency (MHz)
-20
Amplitude (dBFS)
-40
-60
-80
-100
-120
-750 -500 -250 0 250 500 750
Frequency (MHz)
External clock mode, -13dBFS each tone External clock mode, -30dBFS each tone
Figure 6-462. RX Dual Tone Output FFT at 8.11GHz Figure 6-463. RX Dual Tone Output FFT at 8.11GHz
0
-20
Amplitude (dBFS)
-40
-60
-80
-100
-120
-750 -500 -250 0 250 500 750
Frequency (MHz)
1 1
0.5 0.5
0 0
-0.5 -0.5 DSA=0dB
DSA=4dB
-1 -1 DSA=8dB
DSA=3dB, 1RX DSA=12dB, 1RX DSA=12dB
-1.5 DSA=3dB, 2RX DSA=12dB, 2RX -1.5 DSA=16dB
-2 DSA=3dB, 3RX DSA=12dB, 3RX -2 DSA=20dB
DSA=3dB, 4RX DSA=12dB, 4RX DSA=24dB
-2.5 -2.5
9000 9200 9400 9600 9800 10000 10200 9000 9200 9400 9600 9800 10000 10200
Input Frequency (MHz) Input Frequency (MHz)
-0.2 -1
-2
-0.4
no cal, -40C after cal, -40C -3 no cal, -40C after cal, -40C
-0.6 no cal, 25C after cal, 25C
-4 no cal, 25C after cal, 25C
no cal, 110C after cal, 110C no cal, 110C after cal, 110C
-0.8
-5
0 2 4 6 8 10 12 14 16 18 20 22 2425
0 2 4 6 8 10 12 14 16 18 20 22 2425
DSA Setting (dB)
DSA Setting (dB)
Figure 6-467. RX Amplitude Differential Non-Linearity at 9.6 GHz Figure 6-468. RX Amplitude Integrated Non-linearity at 9.6 GHz
5 10
Phase Differential Non-linearity (degrees)
4 8
2 4
1 2
0 0
-1 -2
-2 -4
Figure 6-469. RX Phase Differential Non-linearity at 9.6 GHz Figure 6-470. RX Phase Integrated Non-linearity at 9.6 GHz
-60 -40
-40C AIN=-13dBFS, -40C AIN=-7.dBFS, -40C
25C AIN=-13dBFS, 25C AIN=-7dBFS, 25C
-70 110C -50 AIN=-13dBFS, 110C AIN=-7dBFS, 110C
-80 -60
IMD3 (dBFS)
IMD3 (dBFS)
-90 -70
-100 -80
-110 -90
-120 -100
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16 18 20
Input Amplitude per Tone (dBFS) DSA Setting (dB)
IMD3 (dBFS)
IMD3 (dBFS)
-70 -90
-100
-80
-110
-90
-120
-100 -130
0 2 4 6 8 10 12 14 16 18 20 0 50 100 150 200 250 300 350 400 450 500
DSA Setting (dB) Tone Spacing (MHz)
-144 110C
-90
-146
-95
HD2 (dBFS)
-148
-150 -100
-152
AIN=-12dBFS, -40C AIN=-1dBFS, -40C -105
-154 AIN=-12dBFS, 25C AIN=-1dBFS, 25C
AIN=-12dBFS, 110C AIN=-1dBFS, 110C -110
-156 AIN=-6dBFS, -40C
-158 AIN=-6dBFS, 25C -115
AIN=-6dBFS, 110C
-160 -120
0 2 4 6 8 10 12 14 16 18 20 -60 -50 -40 -30 -20 -10 0
DSA Setting (dB) Input Amplitude (dBFS)
Figure 6-477. RX NSD vs DSA Setting at 9.6 GHz Figure 6-478. RX HD2 vs Digital Level at 9.6 GHz
HD3 (dBFS)
-70 -80
-80 -90
-90 -100
-100 -110
-110 -120
0 2 4 6 8 10 12 14 16 18 20 -60 -50 -40 -30 -20 -10 0
DSA Setting (dB) Input Amplitude (dBFS)
Figure 6-479. RX HD2 vs DSA Setting at 9.6 GHz Figure 6-480. RX HD3 vs Digital Level at 9.6 GHz
0 0
AIN=-12dBFS, -40C AIN=-1dBFS, -40C
-10 AIN=-12dBFS, 25C AIN=-1dBFS, 25C
AIN=-12dBFS, 110C AIN=-1dBFS, 110C -20
-20
AIN=-6dBFS, -40C
-30 AIN=-6dBFS, 25C
Amplitude (dBFS)
-40
AIN=-6dBFS, 110C
HD3 (dBFS)
-40
-50 -60
-60
-80
-70
-80 -100
-90
-100 -120
-750 -500 -250 0 250 500 750
0 2 4 6 8 10 12 14 16 18 20
Frequency [MHz]
DSA Setting (dB)
. –1 dBFS
Figure 6-481. RX HD3 vs DSA Setting at 9.6 GHz Figure 6-482. RX Single Tone Output FFT at 9.61 GHz
0 0
-20 -20
Amplitude (dBFS)
Amplitude (dBFS)
-40 -40
-60 -60
-80 -80
-100 -100
-120 -120
-750 -500 -250 0 250 500 750 -750 -500 -250 0 250 500 750
Frequency [MHz] Frequency (MHz)
–6 dBFS –12 dBFS.
Figure 6-483. RX Single Tone Output FFT at 9.61 GHz Figure 6-484. RX Single Tone Output FFT at 9.61 GHz
-20
Amplitude (dBFS)
-40
-60
-80
-100
-120
-750 -500 -250 0 250 500 750
Frequency (MHz)
-20 -20
Amplitude (dBFS)
Amplitude (dBFS)
-40 -40
-60 -60
-80 -80
-100 -100
-120 -120
-750 -500 -250 0 250 500 750 -750 -500 -250 0 250 500 750
Frequency (MHz) Frequency (MHz)
9.61 GHz and 9.635 GHz, –7 dBFS each tone 9.61 GHz and 9.635 GHz, –13 dBFS each tone
Figure 6-487. RX Two Tone Output FFT at 9.61 GHz Figure 6-488. RX Two Tone Output FFT at 9.61 GHz
0 0
-20 -20
Amplitude (dBFS)
Amplitude (dBFS)
-40 -40
-60 -60
-80 -80
-100 -100
-120 -120
-750 -500 -250 0 250 500 750 -750 -500 -250 0 250 500 750
Frequency (MHz) Frequency (MHz)
9.61 GHz and 9.635 GHz, –30 dBFS each tone 9.61 GHz and 9.635 GHz, –60 dBFS each tone
Figure 6-489. RX Two Tone Output FFT at 9.61 GHz Figure 6-490. RX Two Tone Output FFT at 9.61 GHz
Typical values at TA = +25°C with nominal supplies. Unless otherwise noted, fREF = 491.52 MHz, Phase noise measured at
TX output
-80
fVCO=11796.48MHz
-90 fVCO=8847.36MHz
fVCO=7864.32MHz
-100
-120
-130
-140
-150
-160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz)
-110
-120 -120
-130
-140 -140
-150
-160 -160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz) Offset Frequency (Hz)
PLL enabled, fVCO = 11796.48 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 11796.48 MHz, fREF = 491.52MSPS,
measured at 2TXOUT measured at 2TXOUT
Figure 6-493. Phase Noise for 12-GHz VCO vs Figure 6-494. Phase Noise for 12-GHz VCO vs
Offset Frequency and Temperature at fOUT = 1910 Offset Frequency and fOUT at 25°C
MHz
-80 -80
fOUT=2610MHz fOUT=2610MHz
-90 fOUT=3510MHz -90 fOUT=3510MHz
fOUT=4910MHz fOUT=4910MHz
-100 -100
Phase Noise (dBc/Hz)
-110 -110
-120 -120
-130 -130
-140 -140
-150 -150
-160 -160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz) Offset Frequency (Hz)
PLL enabled, fVCO = 11796.48 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 11796.48 MHz, fREF = 491.52MSPS,
measured at 2TXOUT measured at 2TXOUT
Figure 6-495. Phase Noise for 12-GHz VCO vs Figure 6-496. Phase Noise for 12-GHz VCO vs
Offset Frequency and fOUT at –40°C Offset Frequency and fOUT at 110°C
-80 -40
low CP setting fREF = 122.88MHz
-90 high CP setting -42 fREF = 245.76MHz
mid CP setting fREF = 368.64MHz
-46
-110
-48
-120 -50
-130 -52
-54
-140
-56
-150
-58
-160 -60
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 -40 -20 0 20 40 60 80 100 120
freq_offset(KHz) Temperature (qC)
PLL enabled, fVCO = 11796.48 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 11796.48 MHz, 1-kHz to 100-MHz,
measured at 2TXOUT single-sided integration bandwidth, measured at 2TXOUT
Figure 6-497. Phase Noise for 12-GHz VCO vs Figure 6-498. Integrated Phase Noise for 12-GHz
Offset Frequency and CP Setting at fOUT = 2.6 GHz VCO vs Temperature and fREF at fOUT = 2.6 GHz
-120 -125
fREF = 122.88MHz
Phase Noise at 600kHz Offset (dBc/Hz)
PLL enabled, fVCO = 11796.48 MHz, measured at 2TXOUT A. PLL enabled, fVCO = 11796.48 MHz, measured at 2TXOUT
Figure 6-499. Phase Noise for 12-GHz VCO at Figure 6-500. Phase Noise for 12-GHz VCO at 800-
600kHz Offset vs Temperature and fREF at fOUT = kHz Offset vs Temperature and fREF at fOUT = 2.6
2.6 GHz GHz
-125 -130
fREF = 122.88MHz fREF = 122.88MHz
Phase Noise at 1.8MHz Offset (dBc/Hz)
Phase Noise at 1MHz Offset (dBc/Hz)
PLL enabled, fVCO = 11796.48 MHz, measured at 2TXOUT PLL enabled, fVCO = 11796.48 MHz, measured at 2TXOUT
Figure 6-501. Phase Noise for 12-GHz VCO at 1- Figure 6-502. Phase Noise for 12-GHz VCO at 1.8-
MHz Offset vs Temperature and fREF at fOUT = 2.6 MHz Offset vs Temperature and fREF at fOUT = 2.6
GHz GHz
-140 -150
fREF = 122.88MHz
PLL enabled, fVCO = 11796.48 MHz, measured at 2TXOUT PLL enabled, fVCO = 11796.48 MHz, measured at 2TXOUT
Figure 6-503. Phase Noise for 12-GHz VCO at 5- Figure 6-504. Phase Noise for 12-GHz VCO at 50-
MHz Offset vs Temperature and fREF at fOUT = 2.6 MHz Offset vs Temperature and fREF at fOUT = 2.6
GHz GHz
-80 -80
25qC fOUT=2610MHz
-90 -40qC -90 fOUT=3510MHz
110qC fOUT=4910MHz
-100 -100
Phase Noise (dBc/Hz)
-120 -120
-130 -130
-140 -140
-150 -150
-160 -160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz) Offset Frequency (Hz)
PLL enabled, fVCO = 9830.4 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 9830.4 MHz, fREF = 491.52MSPS,
measured at 2TXOUT measured at 2TXOUT
Figure 6-505. Phase Noise for 10-GHz VCO vs Figure 6-506. Phase Noise for 10-GHz VCO vs
Offset Frequency and Temperature at fOUT = 1910 Offset Frequency and fOUT at 25°C
MHz
-80 -80
fOUT=2610MHz fOUT=2610MHz
-90 fOUT=3510MHz -90 fOUT=3510MHz
fOUT=4910MHz fOUT=4910MHz
-100 -100
Phase Noise (dBc/Hz)
-110 -110
-120 -120
-130 -130
-140 -140
-150 -150
-160 -160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz) Offset Frequency (Hz)
PLL enabled, fVCO = 9830.4 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 9830.4 MHz, fREF = 491.52MSPS,
measured at 2TXOUT measured at 2TXOUT
Figure 6-507. Phase Noise for 10-GHz VCO vs Figure 6-508. Phase Noise for 10-GHz VCO vs
Offset Frequency and fOUT at –40°C Offset Frequency and fOUT at 110°C
-40 -120
fREF = 122.88MHz fREF = 122.88MHz
PLL enabled, fVCO = 9830.4 MHz, 1-kHz to 100-MHz, single- PLL enabled, fVCO = 9830.4 MHz, measured at 2TXOUT
sided integration bandwidth, measured at 2TXOUT
Figure 6-510. Phase Noise for 10-GHz VCO at 600
Figure 6-509. Integrated Phase Noise for 10-GHz kHz vs Temperature and fREF at fOUT = 2.6 GHz
VCO vs Temperature and fREF at fOUT = 2.6 GHz
-125 -125
fREF = 122.88MHz
Phase Noise at 800kHz Offset (dBc/Hz)
-128 -128
-129 -129
-130 -130
-131 -131
-132 -132
-133 fREF = 122.88MHz -133
-134 fREF = 245.76MHz -134
fREF = 491.52MHz
-135 -135
-40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100
Temperature (qC) Temperature (qC)
PLL enabled, fVCO = 9830.4 MHz, measured at 2TXOUT PLL enabled, fVCO = 9830.4 MHz, measured at 2TXOUT
Figure 6-511. Phase Noise for 10-GHz VCO at 800 Figure 6-512. Phase Noise for 10-GHz VCO at 1
kHz vs Temperature and fREF at fOUT = 2.6 GHz MHz vs Temperature and fREF at fOUT = 2.6 GHz
-130 -140
fREF = 122.88MHz fREF = 122.88MHz
Phase Noise at 1.8MHz Offset (dBc/Hz)
-133 -143
-134 -144
-135 -145
-136 -146
-137 -147
-138 -148
-139 -149
-140 -150
-40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100
Temperature (qC) Temperature (qC)
PLL enabled, fVCO = 9830.4 MHz, measured at 2TXOUT PLL enabled, fVCO = 9830.4 MHz, measured at 2TXOUT
Figure 6-513. Phase Noise for 10-GHz VCO at 1.8 Figure 6-514. Phase Noise for 10-GHz VCO at 5
MHz vs Temperature and fREF at fOUT = 2.6 GHz MHz vs Temperature and fREF at fOUT = 2.6 GHz
-150 -80
25qC
Phase Noise at 50MHz Offset (dBc/Hz)
-151 -90 -40qC
-152 110qC
-100
-156 -130
-157
-140
-158 fREF = 122.88MHz
fREF = 245.76MHz -150
-159
fREF = 491.52MHz
-160 -160
-40 -20 0 20 40 60 80 100 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Temperature (qC) Offset Frequency (Hz)
PLL enabled, fVCO = 9830.4 MHz, measured at 2TXOUT PLL enabled, fVCO = 8847.36 MHz, fREF = 491.52MSPS,
measured at 2TXOUT
Figure 6-515. Phase Noise for 10-GHz VCO at 50
MHz vs Temperature and fREF at fOUT = 2.6 GHz Figure 6-516. Phase Noise for 9-GHz VCO vs Offset
Frequency and Temperature at fOUT = 1910 MHz
-80 -80
fOUT=2610MHz fOUT=2610MHz
-90 fOUT=3510MHz -90 fOUT=3510MHz
fOUT=4910MHz fOUT=4910MHz
-100 -100
Phase Noise (dBc/Hz)
-120 -120
-130 -130
-140 -140
-150 -150
-160 -160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz) Offset Frequency (Hz)
PLL enabled, fVCO = 8847.36 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 8847.36 MHz, fREF = 491.52MSPS,
measured at 2TXOUT measured at 2TXOUT
Figure 6-517. Phase Noise for 9-GHz VCO vs Offset Figure 6-518. Phase Noise for 9-GHz VCO vs Offset
Frequency and fOUT at 25°C Frequency and fOUT at –40°C
-80 -60
fOUT=2610MHz 1kHz 1MHz
-90 fOUT=3510MHz -70 10kHz 10MHz
fOUT=4910MHz -80 100kHz 100MHz
-100
Phase Noise (dBc/Hz)
-90
Temperature (qC)
-110
-100
-120 -110
-130 -120
-130
-140
-140
-150
-150
-160 -160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 -40 -20 0 20 40 60 80 100 120
Offset Frequency (Hz) Phase Noise (dBc) D303
PLL enabled, fVCO = 8847.36 MHz, fREF = 491.52MSPS, PLL enabled, fVCO = 8847.36 MHz, fREF = 491.52MSPS,
measured at 2TXOUT minimum LPF BW, measured at 2TXOUT
Figure 6-519. Phase Noise for 9-GHz VCO vs Offset Figure 6-520. Phase Noise for 9-GHz VCO vs
Frequency and fOUT at 110°C Temperature Over Offset Frequency at fOUT = 2.6
GHz
-80
25qC
-90 -40qC
110qC
-100
-120
-130
-140
-150
-160
1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Offset Frequency (Hz)
Figure 6-521. Phase Noise for 8-GHz VCO vs Offset Frequency and Temperature at fOUT = 1910 MHz
7.5 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
www.ti.com 12-Jun-2023
PACKAGING INFORMATION
Orderable Device Status Package Type Package Pins Package Eco Plan Lead finish/ MSL Peak Temp Op Temp (°C) Device Marking Samples
(1) Drawing Qty (2) Ball material (3) (4/5)
(6)
AFE7950IABJ ACTIVE FCBGA ABJ 400 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 85 AFE7950I Samples
AFE7950IALK ACTIVE FCBGA ALK 400 90 Non-RoHS Call TI Level-3-220C-168 HR -40 to 85 AFE7950 Samples
& Green SNPB
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com 12-Jun-2023
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com 2-Aug-2023
TRAY
W-
Outer
tray
width
Text
Pack Materials-Page 1
PACKAGE OUTLINE
ABJ0400A SCALE 0.750
FCBGA - 2.65 mm max height
BALL GRID ARRAY
17.2
BALL A1 CORNER A
16.8
17.2
( 16)
16.8
2.65
2.29 (1.4)
0.2 C
C
SEATING PLANE
0.76 NOTE 4
BALL TYP
0.56
0.12 C
0.5
TYP
0.3
15.2 TYP
SYMM
0.8 TYP (0.9) TYP
Y
W
V
U
T
R
P
N 15.2
M SYMM
L TYP
K
J
H
G
0.55 F
400X E
0.45 D
0.15 C A B C
B
0.08 C NOTE 3 A
1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20 0.8 TYP
4221311/D 03/2023
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
5. The lids are electrically floating (e.g. not tied to GND).
www.ti.com
EXAMPLE BOARD LAYOUT
ABJ0400A FCBGA - 2.65 mm max height
BALL GRID ARRAY
(0.8) TYP
A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(0.8) TYP C
D
E
F
400X ( 0.4) G
H
J
K SYMM
L
M
N
P
R
T
U
V
W
Y
SYMM
6. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).
www.ti.com
EXAMPLE STENCIL DESIGN
ABJ0400A FCBGA - 2.65 mm max height
BALL GRID ARRAY
A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(0.8) C
TYP
D
E
F
G
H
J
K SYMM
L
M
N
P
R
T
U
V
W
Y
SYMM
4221311/D 03/2023
NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
www.ti.com
PACKAGE OUTLINE
ALK0400A SCALE 0.750
FCBGA - 2.65 mm max height
BALL GRID ARRAY
17.2
BALL A1 CORNER A
16.8
17.2
( 16)
16.8
2.65
2.29 (1.4)
0.2 C
C
SEATING PLANE
0.76 NOTE 4
BALL TYP
0.56
0.12 C
0.5
TYP
0.3
15.2 TYP
SYMM
0.8 TYP (0.9) TYP
Y
W
V
U
T
R
P
N 15.2
M SYMM
L TYP
K
J
H
G
0.55 F
400X E
0.45 D
0.15 C A B C
B
0.08 C NOTE 3 A
1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20 0.8 TYP
4225930/C 03/2023
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.
4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
5. Pb-Free die bump and SnPb solder ball.
6. The lids are electrically floating (e.g. not tied to GND).
www.ti.com
EXAMPLE BOARD LAYOUT
ALK0400A FCBGA - 2.65 mm max height
BALL GRID ARRAY
(0.8) TYP
A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(0.8) TYP C
D
E
F
400X ( 0.4) G
H
J
K SYMM
L
M
N
P
R
T
U
V
W
Y
SYMM
7. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).
www.ti.com
EXAMPLE STENCIL DESIGN
ALK0400A FCBGA - 2.65 mm max height
BALL GRID ARRAY
A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(0.8) C
TYP
D
E
F
G
H
J
K SYMM
L
M
N
P
R
T
U
V
W
Y
SYMM
4225930/C 03/2023
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated