0% found this document useful (0 votes)
42 views20 pages

Cambridge International Examinations

This document is the front cover and first two questions of a Cambridge International A-Level Mathematics exam from May/June 2017. The first question asks students to solve the equation ln x^2 + 1 = 1 + 2 ln x, giving their answer to 3 significant figures. The second question asks students to solve the inequality |x - 3| < 3x - 4. The document provides the standard instructions and information for candidates taking the exam, including specifying the number of marks allocated to each question.

Uploaded by

loycoy008
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
42 views20 pages

Cambridge International Examinations

This document is the front cover and first two questions of a Cambridge International A-Level Mathematics exam from May/June 2017. The first question asks students to solve the equation ln x^2 + 1 = 1 + 2 ln x, giving their answer to 3 significant figures. The second question asks students to solve the inequality |x - 3| < 3x - 4. The document provides the standard instructions and information for candidates taking the exam, including specifying the number of marks allocated to each question.

Uploaded by

loycoy008
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE
NAME

CENTRE CANDIDATE
*9035132693*

NUMBER NUMBER

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 (P3) May/June 2017
1 hour 45 minutes
Candidates answer on the Question Paper.
Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in
degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.

JC17 06_9709_32/2R
© UCLES 2017 [Turn over
2

1 Solve the equation ln x2 + 1 = 1 + 2 ln x, giving your answer correct to 3 significant figures. [3]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


3

2 Solve the inequality  x − 3 < 3x − 4. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


4

3 (i) Express the equation cot 1 − 2 tan 1 = sin 21 in the form a cos4 1 + b cos2 1 + c = 0, where a, b
and c are constants to be determined. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


5

(ii) Hence solve the equation cot 1 − 2 tan 1 = sin 21 for 90Å < 1 < 180Å. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


6

4 The parametric equations of a curve are

x = t2 + 1, y = 4t + ln 2t − 1.

dy
(i) Express in terms of t. [3]
dx

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


7

(ii) Find the equation of the normal to the curve at the point where t = 1. Give your answer in the
form ax + by + c = 0. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


8

5 In a certain chemical process a substance A reacts with and reduces a substance B. The masses of A
= −0.2xy and
dy
and B at time t after the start of the process are x and y respectively. It is given that
dt
x= . At the beginning of the process y = 100.
10
1 + t2

(i) Form a differential equation in y and t, and solve this differential equation. [6]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


9

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(ii) Find the exact value approached by the mass of B as t becomes large. State what happens to the
mass of A as t becomes large. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


10

6 Throughout this question the use of a calculator is not permitted.

The complex number 2 − i is denoted by u.

(i) It is given that u is a root of the equation x3 + ax2 − 3x + b = 0, where the constants a and b are
real. Find the values of a and b. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


11

(ii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying both the inequalities  z − u  < 1 and  z  <  z + i. [4]

© UCLES 2017 9709/32/M/J/17 [Turn over


12

(i) Prove that if y = = sec 1 tan 1.


1 dy
cos 1 d1
7 then [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

1 + sin 1
 2 sec2 1 + 2 sec 1 tan 1 − 1.
1 − sin 1
(ii) Prove the identity [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


13

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

10
1 + sin 1
(iii) Hence find the exact value of Ô d1.
4

1 − sin 1
[4]
0

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


14

5x2 − 7x + 4
Let f x =
3x + 2 x2 + 5
8 .

(i) Express f x in partial fractions. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


15

(ii) Hence obtain the expansion of f x in ascending powers of x, up to and including the term in x2 .
[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


16
−−→
9 Relative to the origin O, the point A has position vector given by OA = i + 2j + 4k. The line l has
equation r = 9i − j + 8k + - 3i − j + 2k.

(i) Find the position vector of the foot of the perpendicular from A to l. Hence find the position
vector of the reflection of A in l. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


17

(ii) Find the equation of the plane through the origin which contains l. Give your answer in the form
ax + by + cz = d. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(iii) Find the exact value of the perpendicular distance of A from this plane. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17 [Turn over


18

10
y

x
O p 1
40

The diagram shows the curve y = x2 cos 2x for 0 ≤ x ≤ 14 0. The curve has a maximum point at M
where x = p.
@ A
(i) Show that p satisfies the equation p = 12 tan−1
1
. [3]
p

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

A @
(ii) Use the iterative formula pn+1 = tan −1
1 1
to determine the value of p correct to 2 decimal
2
pn
places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


19

(iii) Find, showing all necessary working, the exact area of the region bounded by the curve and the
x-axis. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2017 9709/32/M/J/17


20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.
Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 9709/32/M/J/17

You might also like