Ultra Low-Power 8-Mbit Serial SPI Page EEPROM With Dual and Quad Outputs
Ultra Low-Power 8-Mbit Serial SPI Page EEPROM With Dual and Quad Outputs
Datasheet
Ultra low-power 8-Mbit serial SPI page EEPROM with dual and quad outputs
Features
Interface
• Supports serial peripheral interface (SPI) and dual/quad outputs
Supply voltage
• Wide voltage range: VCC from 1.6 to 3.6 V
Advanced features
• ECC for high memory reliability (DEC, TED)
• Schmitt trigger inputs for noise filtering
• Output buffer programmable strength
• Operating status flags for ISO26262
• Software reset
• Write protection by block, with top/bottom option
• Unique ID upon request
• Electronic identification
• Supports SFDP (serial flash discoverable parameters) mode
• JEDEC standard manufacturer identification
Package
• ECOPACK2 (RoHS compliant) and halogen-free packages:
– DFN8 2 x 3 mm
– SO8N
– WLCSP8
ESD protection
• Enhanced ESD HBM (human body model)
1 Description
The M95P08-I and M95P08-E are manufactured with ST's advanced proprietary NVM technology. They offer byte
flexibility, page alterability, high page cycling performance, and ultra‑low power consumption, equivalent to that of
EEPROM technology.
The M95P08-I and M95P08-E are an 8-Mbit SPI page EEPROM device organized as 2048 programmable pages
of 512 bytes each, accessed through an SPI bus with high-performance dual- and quad SPI outputs.
The devices offer two additional (identification) 512-byte pages:
• The first contains identification data and, upon request, the UID.
• The second can be used to store sensitive application parameters, which can (later) be permanently locked
in read-only mode.
Additional status, configuration, and volatile registers set the desired device configuration, while the safety
register provides information on the device status.
The M95P08-I operates with a supply voltage from 1.6 to 3.6 V over an ambient temperature range of -40 °C to
+85 °C.
The M95P08-E offers an extended temperature range from -40 °C to +105 °C. The device supports a clock
frequency of up to 80 MHz.
The M95P08-I and M95P08-E offer byte and page write instructions of up to 512 bytes. Write instructions consist
in self-timed auto erase and program operations, resulting in flexible data byte management.
The devices also accept page/block/sector/chip erase commands to set the memory to an erased state.
The memory can then be fast-programmed by 512-byte pages, and further optimized using the Page program
with buffer load instruction to hide the SPI communication latency.
S 1 8 VCC
Q-DQ1 2
M95P08-I 7 HOLD-DQ3
W-DQ2 3 M95P08-E 6 C
DT72392V1
VSS 4 5 D-DQ0
GND W W GND
S S
HOLD Q Q HOLD
VCC VCC
D CLK CLK D
DT73028V1
Marking side (top view) Bump side (bottom view)
2 Memory
SPI
Power
mgmt
Decoder X
Memory array
Registers
Identification pages
3 Signal description
During all operations, VCC must be held stable and within the specified valid range VCC(min) to VCC(max).
All the input and output signals, described in the following sections, must be held high or low or transit between
levels, according to VIH, VOH, VIL, or VOL voltages specified in Table 25. DC characteristics - other parameters).
For consistency with the SPI nomenclature, this pin is referenced as the HOLD pin, unless specifically addressing
the quad output mode, in which case it is referenced as DQ3.
4 Device operation
Vss
Vcc
R R R
HOLD
W
SPI Interface with MOSI
CPOL,CPHA) =
MISO
(0,0 or (1,1)
C
Vcc Vcc Vcc
C Q,DQ1 D,DQ0 C Q,DQ1 D,DQ0 C Q,DQ1 D,DQ0
SPI Bus Master Vss Vss Vss
S S S
CS3 CS2 CS1
Figure 4 shows an example of three memory devices connected to an SPI bus master. Only one memory device
is selected at a time, so only one memory drives the serial data output (Q) line at a time. The other memory
devices are high impedance.
The pull-up resistor R (whose typical value is 100 kΩ) ensures that a device is not selected if the bus master
leaves the S line in the high impedance state.
CPOL CPHA
0 0 C
1 1 C
D MSB
Q MSB
Because at a given instant only one device is selected, only one device drives the serial data output (n-DQn) at a
time. The other devices are in high-Z. An example of three devices connected to an MCU through an SPI bus is
shown in Figure 4. Bus master and memory devices on the SPI bus.
HOLD
Hold Hold
condition condition
Figure 6 also shows what happens if the rising and falling edges are not timed to coincide with Serial clock (C)
being low.
To restart communication with the device, it is necessary to drive HOLD high, and then to drive chip select (S) low.
This prevents the device from returning to the hold condition.
4.11 ECC
The error correction code (ECC) is an internal logic function that significantly improves the data integrity of the
M95P08-I and M95P08-E. It is always active, and is transparent for SPI communication.
The ECC offers double-bit correction over 16 bytes (128 bits), and triple-bit error detection. When a 3-error
detection occurs, no correction is applied to the data. The single, double, and triple error detection bits are
readable in the safety register.
The ECC flag information is cumulative, meaning that on the same read instruction the flags are raised as soon
as a correction or a detection occurs, and all flags may be raised. The status bit is detailed in Section 5.2.2 Safety
register.
Protected size(1)
TB BP2 BP1 BP0 Protected block(s) Protected addresses Protected portion
(Byte)
1. The device is ready to accept any ERASE commands only if all block protection bits (BP2, BP1, BP0) are set to 0.
Memory content(1)
SRWD Write protection
W Mode Protected
bit of the status register Unprotected area
area
1. As defined by the values in the block protection (BP2, BP1, BP0) and TB bits of the status register.
b7 b6 b5 b4 b3 b2 b1 b0
b7 b6 b5 b4 b3 b2 b1 b0
The nonvolatile DRV1 and DRV0 bits determine the output driver strength (RON of the buffer) for the read
operations. The values of DRV1 and DRV0 are given in Table 8. Output driver strength.
The nonvolatile LID bit determines if the identification page is locked or not. When LID = 0, the identification page
can be modified by the user. When LID = 1, this page is locked in read-only mode and cannot be changed. The
LID bit can be modified with a WRSR instruction when two data bytes are sent, see Section 6.8 Write status and
configuration registers (01h).
DRV1, DRV0 Buffer strength RON typical at 3.3 V / 25 °C RON typical at 1.8 V / 25 °C
0, 0 High 30 Ω 50 Ω
0, 1 Medium 110 Ω 200 Ω
1, 0 Low 175 Ω 300 Ω
1, 1 Default 50 Ω 90 Ω
b7 b6 b5 b4 b3 b2 b1 b0
b7 b6 b5 b4 b3 b2 b1 b0
6 Instructions
All instructions can run at the maximum frequency of 80 MHz, except read instructions (READ and RDID), which
can run at 50 MHz maximum.
Each command is composed of several bytes (the MSB is transmitted first), initiated with the instruction byte as
summarized in Table 11. If an invalid instruction (that is, one not contained in Table 11) is sent, the device
automatically enters a wait state until the device or the state is deselected.
0 1 2 3 4 5 6 7
Q High impedance
WREN instruction
MS54391V1
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Q High impedance
Q High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7
This instruction can be used at any time, even while a program, erase or write status register cycle is in progress.
The WIP status bit can be checked to determine when the cycle is complete, and if the device is ready to accept
another instruction. The status register can be read continuously in loop mode. The instruction is completed by
driving S high.
Q High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7
The content of Configuration and Safety registers is described in Section 5.2 Configuration and safety register
format.
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
S
C
Q High impedance
CLRSF instruction
MS54397V1
Q High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
D D7 D6 D5 D4 D3 D2 D1 D0
Q High impedance
During the Volatile register write operation (06h combined with 81h), after S is driven high, the self-timed Write
register cycle starts and the WRVR time is instantaneous (see Table 26. Programming times). The content of
volatile register is described in Section 5.3 Volatile register format.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D D7 D6 D5 D4 D3 D2 D1 D0
Q High impedance
D D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
Q High impedance
WRSR instruction Status register data byte in Configuration register data byte in
MS69276V1
0 1 2 3 4 5 6 7 8 9 10 29 30 31 32 33 34 35 36 37 38 39
Q High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7
6.10 Fast read single output with one dummy byte (0Bh)
The fast read single output with one dummy byte (FREAD) instruction allows one or more data bytes to be
sequentially read from the memory. However, through the addition of eight dummy clocks after the 24-bit address,
it can operate at the highest possible frequency (see Table 27. AC characteristics).
The instruction is initiated by driving the S pin low and then shifting the instruction code 0Bh followed, first by a
24-bit address (A23-A0) into the D pin, then by eight additional dummy clock cycles.
The code and address bits are latched on the rising edge of the C pin. After the eight dummy clock cycles are
received, the data byte of the addressed memory location is shifted out (MSB first) on the Q pin, on the falling
edge of C. The address is automatically incremented to the next higher address after each byte of data is shifted
out, allowing a continuous stream of data. This means that the entire memory can be accessed with a single
instruction as long as the clock continues to cycle. The address counter rolls over to 0 after the highest address is
reached. The instruction is completed by driving S high.
During the dummy clock cycles the data value on the D pin is Don't care, and the Q pin is in a high-Z.
Figure 17. Fast read single output with one dummy byte
0 1 2 3 4 5 6 7 8 9 10 29 30 31
Q High impedance
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q
6.11 Fast read dual output with one dummy byte (3Bh)
The Fast read dual output with one dummy byte (FDREAD) instruction is similar to the Fast read single output
with one dummy byte (0Bh) instruction, except that data is output on pins DQ1 and DQ0. This allows the data to
be transferred at the highest possible frequency of fC (see Table 27. AC characteristics).
The instruction is initiated by driving the S pin low, then shifting the instruction code 3Bh followed by a 24-bit
address (A23-A0) into the D pin, and finally adding eight dummy clock cycles, as shown in Figure 18. The code
and address bits are latched on the rising edge of the C pin. After the eight dummy clock cycles are received, the
data byte of the addressed memory location is shifted out (MSB first) on the DQ1 and DQ0 pins (every two bits
interleave on the two I/O pins), on the falling edge of C.
The address is automatically incremented to the next higher address after each data byte is shifted out, so the
whole memory can be read out with a Fast read dual instruction. The address counter rolls over to 0 after the
highest address is reached. The instruction is completed by driving the S pin high. During the dummy clock
cycles, the data value on the D pin is Don't care, and the Q pin is high-Z.
Figure 18. Fast read dual output with one dummy byte
0 1 2 3 4 5 6 7 8 9 10 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
FDREAD instruction 24-bit address Dummy clock cycles Data Out 1 Data Out 2
MS55470V1
6.12 Fast read quad output with one dummy byte (6Bh)
The fast read quad output with one dummy byte (FQREAD) instruction is similar to the Fast read dual output with
one dummy byte instruction, except that data is output on four pins (DQ3, DQ2, DQ1, and DQ0). This allows data
to be transferred at the highest possible frequency fC (see Table 27. AC characteristics).
The instruction is initiated by driving the S pin low, then shifting the instruction code 6Bh, followed by a 24-bit
address (A23-A0) into the D pin, and then adding eight dummy clock cycles as shown in Figure 19. The code and
address bits are latched on the rising edge of the C pin. After the eight dummy clock cycles are received, the data
byte of the addressed memory location is shifted out (MSB first) on the DQ3, DQ2, DQ1, and DQ0 pins (every
four bits interleave on the four I/O pins) on the falling edge of C.
The address is automatically incremented to the next higher address after each data byte is shifted out, so the
whole memory can be read out with a Fast read quad instruction. The address counter rolls over to 0 after the
highest address is reached.
The instruction is completed by driving the S pin high.
During the dummy clock cycles, the data value on the D pin is Don't care, and the Q pin is high-Z.
Note: The W-DQ2 and HOLD-DQ3 pins switch in high‑impedance after the last bit of the third address byte of the
instruction.
Figure 19. Fast read quad output with one dummy byte
0 1 2 3 4 5 6 7 8 9 10 29 30 31
HOLD-DQ3
FQREAD instruction 24-bit address
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
C
Q4 Q0 Q4 Q0 Q4 Q0 D-DQ0
High impedance Q5 Q1 Q5 Q1 Q5 Q1 Q-DQ1
High impedance Q6 Q2 Q6 Q2 Q6 Q2 W-DQ2
High impedance Q7 Q3 Q7 Q3 Q7 Q3 HOLD-DQ3
0 1 2 3 4 5 6 7
Q High impedance
CHER instruction
MS69263V1
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 29 30 31
S
C
Q High impedance
0 1 2 3 4 5 6 7 8 9 10 11 12 29 30 31
S
C
Q High impedance
The S pin must be driven high after the eighth bit of the last byte has been latched. If this is not done the sector
erase instruction is not executed. After S is driven high, the self-timed sector erase instruction starts, for a time
duration of tSE (see Table 26. Programming times). While the sector erase cycle is in progress, the read status
register instruction can still be accessed to check the status of the WIP bit. The WIP bit is set 1 during the sector
erase cycle. It transits to 0 when the cycle is finished and the device is ready to accept further instructions. After
the sector erase cycle is complete, the write enable latch (WEL) bit in the status register is cleared to 0. The
sector erase instruction is not executed if any addressed pages of the sector are protected by the block protection
(BP2, BP1, and BP0) and TB bits. The status is reported with PAMAF and ERF flags. See Table 9. Safety register
format.
0 1 2 3 4 5 6 7 8 9 10 29 30 31 17
S
C
Q High impedance
PGPR instruction 24-bit address Data byte 1 Data bytes 2 to 511 Data byte 512
MS69264V1
S must be driven high after the eighth bit of the last byte has been latched, otherwise the instruction is rejected
and is not executed. After S is driven high, the self-timed page program instruction starts for a time duration of tpp
(see Table 26. Programming times). While the page program cycle is in progress, the read status register
instruction can still be accessed to check the status of the WIP bit, which is at 1 during the page program cycle. It
becomes 0 when the cycle is finished and the device is ready to accept further instructions. When the page
program cycle finishes, the write enable latch (WEL) bit in the status register is cleared to 0. The page program
instruction is not executed if the addressed page is protected by the block protection bits, and the status is
reported with PAMAF, ERF, and PRF flags. See Table 9. Safety register format.
Due to the ECC architecture, the page program operation can be executed only once within a data word of 16
bytes (modulo 16). The page program operation is limited to writing bytes within a single physical page (where
address A23 to A9 are the same), regardless of the number of bytes being programmed. After each data byte is
received, the address on the nine lowest-order address bits (A8 to A0) is internally incremented by one, and the
remaining bits (A23 to A9) remain constant. If more than 512 bytes are transmitted, the address counter rolls over
to the beginning of the same page and, the previously stored data is overwritten.
Caution: In Buffer mode, only a reduced set of instructions is decoded to allow programming of a selected area. When
programming is complete, the BUFEN flag must be reset to enable the device to decode the full set of
instructions. In particular, to check programmed content, the user must exit from Buffer mode to launch a READ
instruction over the programmed area.
0 1 2 3 4 5 6 7 8 9 10 29 30 31 32 33 34 35 36 37 38 39
S
C
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D
S must be driven high after the eighth bit of the last byte has been latched, or the Page write instruction is not
executed. After S is driven high, the self-timed Page write instruction starts for a time duration of tpw (see
Table 26. Programming times). While the Page write cycle is in progress, the Read status register instruction can
still be accessed to check the status of the WIP bit, which is at 1 during the Page program cycle, and becomes a
0 when the cycle is finished and the device is ready to accept further instructions. After the Page write cycle has
finished, the write enable latch (WEL) bit in the status register is cleared to 0.
The page write operation is limited to writing bytes within a single physical page (where address A23 to A9 are the
same). After each data byte received, the address on the nine lowest order address bits (A8 to A0) is internally
incremented by one, and the remaining bits (A23 to A9) remain constant. If more than 512 bytes are transmitted,
the address counter rolls over to the beginning of the same page and the previously stored data are overwritten.
The write page instruction is not executed if a part of the targeted area is protected by the block protection bits. In
this case the status is reported with the PAMAF, ERF, and PRF flags.
Note: The first three bytes (address 00h, 01h, and 02h) of the identification page can also be read with the read
JEDEC identification (JDID) instruction.
The read identification (RDID) instruction is initiated by driving the S pin low and shifting the instruction code 83h,
followed by a 24-bit address (A23-A0) into the D-DQ0 pin.
The data byte pointed to by the lower address bits [A9:A0] is shifted out (MSB first) on the serial data output (Q),
as shown in Figure 26. The address is automatically incremented to the next higher address of the identification
pages after each data byte is shifted out, thus enabling a continuous stream of data. This means that the entire
area of identification pages (1024 bytes) can be accessed with a single instruction as long as the clock continues
to cycle. The instruction is completed by driving S high.
0 1 2 3 4 5 6 7 8 9 10 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Q High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7
Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q
Memory density code UID length or data out 4 UID or data out 5 data out 512 MS69257V1
0 1 2 3 4 5 6 7 8 9 10 29 30 31
S
C
D A23 A22 A21 A2 A1 A0
Q High impedance
0 1 2 3 4 5 6 7 8 9 10 29 30 31 32 33 34 35 36 37 38 39
S
C
D D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If
the address counter exceeds the page boundary (the page size is 512 bytes), the internal address pointer rolls
over to the beginning of the page where the next data bytes are written. If more than 512 bytes are received, only
the last 512 bytes are written.
Q High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
JDID instruction ST manufacturer code SPI family code Memory density code
MS69279V1
0 1 2 3 4 5 6 7 8 9 10 11 29 30 31
Q High impedance
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
D
High impedance Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q
0 1 2 3 4 5 6 7 tDPDSL
S
C
Current
DPD instruction tDPD
Standby current (ICC1) Deep power-down current (ICC2)
MS54399V2
While in deep power-down state, only the deep power-down release and reset instructions, which restore the
device to normal operation, are recognized. The device is always in normal operation on power-up, with a standby
current of ICC1.
Refer to Table 15. Deep power-down conditions for tDPD and tDPDSL.
S
C
Current
RDPD instruction
Deep power-down current (ICC2) Standby current (ICC1)
MS55492V2
Refer to Table 15. Deep power-down conditions for tDPD and tRDPDSL.
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
S
Q High impedance
7 Power-up/down
7.1 Power-up/down
V
VCC (max)
VCC (min)
tVSL
Reset state
VPOR
Time
V
VCC (max)
VCC (min)
tVSL
VPOR
tPWD
Time
1. The WIP bit can be monitored after TVSL has elapsed (WIP = 1 at power-up and before tVSL = 30 μs).
2. Evaluated by characterization - not tested in production.
tDPDSL (1)(2)
Delay for S low (new instruction after S high from deep power-down enter instruction) 10 - μs
7.3 Reset
tRST2(1) Reset time when reset occurs during modify operations except chip erase - 12
ms
tRST3(1) Reset time when reset occurs in chip erase execution - 25
8 Delivery state
9 Maximum ratings
Stressing the device outside the ratings listed in Table 17 may cause permanent damage to the device. These are
stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the
operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
1. Compliant with JEDEC standard J-STD-020 (for small-body, Sn-Pb or Pb free assembly), the ST ECOPACK 7191395
specification, and the European directive on Restrictions on Hazardous Substances (RoHS directive 2011/65/EU of July
2011).
2. Positive and negative pulses applied on different combinations of pin connections, according to ANSI/ESDA/JEDEC JS-001
(C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω).
3. Enable safe manufacturing with proven margin according to JEDEC JEP155B - Recommended ESD target level for HMB
qualification.
10 DC and AC parameters
This section summarizes the operating conditions and the DC/AC characteristics.
0.5 VCC
0.3 VCC
0.1 VCC MS69253V1
NCycle Write cycle endurance –40 °C ≤ TA ≤ 85 °C, (1) - 500000 Write cycle (2)
- Chip erase endurance VCC(min) < VCC < VCC(max) - 100(3) Cycle
1. The data retention behavior is checked in production, while the 100-year limit is defined from characterization and
qualification results.
S = VCC; TA = 25 °C
- 16 35
VIN = VSS or VCC; 1.6 V ≤ VCC ≤ 3.6 V
ICC1 Standby supply current µA
S = VCC; TA = 85 °C
- 35(1) 40(1)
VIN = VSS or VCC; 1.6V ≤ VCC ≤ 3.6 V
S = VCC; TA = 25 °C
- 0.6 1.0
VIN = VSS or VCC; VCC = 1.8 V
µA
S = VCC; TA = 25 °C
- 1.5 2.0
VIN = VSS or VCC; VCC = 3.6 V
ICC2 Deep power-down current
S = VCC; TA = 85 °C
- 0.6(1) 2.0(1)
VIN = VSS or VCC; VCC = 1.8 V
µA
S = VCC; TA = 85 °C
- 1.5(1) 3.0(1)
VIN = VSS or VCC; VCC = 3.6 V
ICC4 (1)
Page program current - 2.0 3.0 mA
S = VCC; TA = 25 °C
- 16 35
VIN = VSS or VCC; 1.6 V ≤ VCC ≤ 3.6 V
ICC1 Standby supply current µA
S = VCC; TA = 105 °C
- 45 150
VIN = VSS or VCC; 1.6V ≤ VCC ≤ 3.6V
S = VCC; TA = 25 °C
- 0.6 1.0
VIN = VSS or VCC; VCC = 1.8 V
µA
S = VCC; TA = 25 °C
- 1.5 2.0
VIN = VSS or VCC; VCC = 3.6 V
ICC2 Deep power-down current
S = VCC; TA = 105 °C
- 1.5 2.0
VIN = VSS or VCC; VCC = 1.8 V
µA
S = VCC; TA = 105 °C
- 2.5 4.0
VIN = VSS or VCC; VCC = 3.6 V
ICC6 (1)
Page write current S = VCC, no polling, - 1.5 3.0
ICC8 (1)
Sector/block erase current - 2.0 3.0
1. TA = 25 °C.
2. No significant degradation with aging.
3. The probability to reach the maximum value is less than 1 out of 10 millions.
tCH (1)
Clock high time 5.5 -
tCLCH (2)
Clock rise time 0.1 -
V / ns
tCHCL(2) Clock fall time 0.1 -
1. tCL+ tCH must never be lower than the shortest possible clock period, 1/fC(max). .
2. Evaluated by characterization - not tested in production.
3. With default buffer strength (DRV1, DRV0 = 1, 1)
4. tCLQV = 14ns with VCC ≤ 2.6V
5. tHHQV = tCLQV + 4 ns, independently from buffer strength.
W tWHSL tSHWL
tSHSL
C
tDVCH tCHCL tCL tCLCH
tCHDX
D MSB IN LSB IN
High impedance
Q
MS69213
S
tHLCH
tCLHL tHHCH
C
tCLHH
tHLQZ tHHQV
DT01448cV2
HOLD
S
tCH tSHSL
C
tCLQX
tQLQH
DT01449gV2
tQHQL
ADDR
D LSB IN
11 Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
h x 45˚
A2 A
c
b ccc
e
0.25 mm
D SEATING GAUGE PLANE
PLANE
C k
8
O7_SO8_ME_V2
E1 E
1 L
A1
L1
A - - 1.750 - - 0.0689
A1 0.100 - 0.250 0.0039 - 0.0098
A2 1.250 - - 0.0492 - -
b 0.280 - 0.480 0.0110 - 0.0189
c 0.170 - 0.230 0.0067 - 0.0091
e - 1.270 - - 0.0500 -
h 0.250 - 0.500 0.0098 - 0.0197
k 0° - 8° 0° - 8°
L 0.400 - 1.270 0.0157 - 0.0500
L1 - 1.040 - - 0.0409 -
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note: The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash, but
including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
0.6 (x8)
3.9
6.7
O7_SO8N_FP_V2
1.27
D A B
N
A
ccc C
A1
Pin #1 C
ID marking
E eee C
Seating plane
Side view
1 2 2x aaa C
2x aaa C
Top view
D2 Datum A
e b
1 2
L1
L3
L L3
Pin #1
ID marking E2
e/2 L1
e Terminal tip
K
ZWb_UFDFN8_ME_V2
L
Detail “A”
Even terminal
ND-1 x e
See Detail “A”
Bottom view
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.
3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.
1.600
0.500 0.300
0.600
ZWb_UFDFN8_FP_V2
1.600
1.400
aaa C (2x)
ddd C
E A
bbb C
B
C H
1
ccc C A B
G
e
D
2 b G
aaa C (2x)
E1j_8M_WLCSP8_ME_V2
A1
Orientation reference I
A3 A F Orientation reference
TOP VIEW A2
BOTTOM VIEW
SIDEVIEW 8 BUMPS
`
1. Dimension is measured at the maximum bump diameter parallel to primary datum C.
2. Primary datum C and seating plane are defined by the spherical crowns of the bump.
3. Drawing is not to scale.
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
0.426
0.400
E1j_8M_WLCSP9_FP_V1
0.268
12 Ordering information
Device function
P08 = 8-Mbit (1048576 x 8 bit)
Device grade
I = industrial temperature range, -40 to 85 °C
E = extended temperature range, -40 to 105 °C
Operating voltage
X = VCC = 1.6 to 3.6 V
Package(1)
MN = SO8N (150 mil width)
CS = WLCSP8
MC = DFN8 2x3
Option
Blank = tube packing
T = tape and reel packing
Process
/E = manufacturing technology code
Option
F = with back side coating
Blank = without back side coating
1. All packages are ECOPACK2 (RoHS-compliant and free of brominated, chlorinated and antimony-oxide flame retardants).
Note: For a list of available options (speed, package, etc.) or for further information on any aspect of this device,
contact your nearest STMicroelectronics sales office.
Note: Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not approved for use in production. ST is not responsible for any consequences resulting from such
use. In no event will ST be liable for the customer using any of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
Device function
P08 = 8-Mbit (1048576 x 8 bit)
Device grade
I = industrial temperature range, -40 to 85 °C
Operating voltage
X = VCC = 1.6 to 3.6 V
Delivery form
W = Unsawn wafer
Wafer thickness
22 = 180 µm back lapped wafer
Wafer testing
I = inkless test
Process
/E = manufacturing technology code
Note: For a list of available options (speed, package, etc.) or for further information on any aspect of this device,
contact your nearest STMicroelectronics sales office.
Note: Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not approved for use in production. ST is not responsible for any consequences resulting from such
use. In no event will ST be liable for the customer using any of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
Revision history
Table 34. Document revision history
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.1 Serial data output (Q-DQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Serial data input (D-DQ0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Serial clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Chip select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Hold (HOLD-DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Write protect (W-DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 VCC (VCC, supply voltage). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.8 VSS (VSS, ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
4.1 Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Dual output read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Quad output read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.8 Active power, standby power, and deep power-down modes . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.9 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.10 Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.11 ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.12 Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.12.1 Memory protection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.12.2 Hardware data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.13 Polling during a program, write, or erase cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Status, configurable, safety, volatile, and SFDP registers . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.1 Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Configuration and safety register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Safety register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
List of figures
Figure 1. 8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. 8-bump ultra thin WLCSP8 connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Hold condition activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7. Write enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. Write disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. Read status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. Read Configuration and Safety registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 11. Clear safety register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 12. Read volatile register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 13. Write Volatile register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Write status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 15. Write status and configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16. Read data single output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17. Fast read single output with one dummy byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 18. Fast read dual output with one dummy byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 19. Fast read quad output with one dummy byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 20. Chip erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 21. Block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 22. Sector erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 23. Page erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 24. Page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 25. Page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 26. Read identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 27. Fast read identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 28. Write identification page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 29. JEDEC identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 30. Read SFDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 31. Deep power-down enter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 32. Deep power-down release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 33. Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 34. Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 35. Power-down timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 36. AC measurement levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 37. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 38. Hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 39. Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 40. SO8N – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 41. SO8N - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 42. UFDFPN8 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 43. UFDFPN8 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 44. WLCSP8 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 45. WLCSP8 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 2. Address range by sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Example of pages inside sector 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Protected area sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Protection modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6. Status register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 7. Configuration register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Output driver strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 9. Safety register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. Volatile register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. M95P08-I and M95P08-E instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Buffer load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. Identification page content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Power-up/down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 15. Deep power-down conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 16. Reset recovery time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 17. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 18. Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 20. Cycling performance by pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 21. Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 22. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. DC characteristics (M95P08-I - industrial temperature range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 24. DC characteristics (M95P08-E - extended temperature range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 25. DC characteristics - other parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 26. Programming times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 27. AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 28. tCLQV characteristics versus buffer strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 29. SO8N – Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 30. UFDFPN8 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 31. WLCSP8 - Mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 32. Ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 33. Ordering information scheme for unsawn wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 34. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60