0% found this document useful (0 votes)
47 views20 pages

000 1 Hal501

The document summarizes Hall effect sensor ICs HAL501-506 and HAL508 made by Micronas Intermetall. The ICs differ in their magnetic switching points, temperature behavior, and switching mode. They feature switching offset compensation, wide voltage range operation, short circuit protection, and temperature compensation that minimizes shifts in switching points over operating conditions. The document provides specifications, diagrams of the chip design and switching behavior, and dimensional drawings of the packaging.

Uploaded by

nopihi1858
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views20 pages

000 1 Hal501

The document summarizes Hall effect sensor ICs HAL501-506 and HAL508 made by Micronas Intermetall. The ICs differ in their magnetic switching points, temperature behavior, and switching mode. They feature switching offset compensation, wide voltage range operation, short circuit protection, and temperature compensation that minimizes shifts in switching points over operating conditions. The document provides specifications, diagrams of the chip design and switching behavior, and dimensional drawings of the packaging.

Uploaded by

nopihi1858
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

MICRONAS

INTERMETALL
HAL501...HAL506,
HAL508
Hall Effect Sensor ICs

MICRONAS
Edition May 5, 1997
6251-405-1DS
HAL501...HAL506
HAL508

Hall Effect Sensor IC Specifications


in CMOS technology
The types differ according to the magnetic flux density
values for the magnetic switching points, the tempera-
Common Features: ture behavior of the magnetic switching points, and the
mode of switching.
– switching offset compensation at 62 kHz
– operates from 3.8 V to 24 V supply voltage
HAL501
– overvoltage and reverse-voltage protection
– switching type: bipolar, very sensitive
– extremely robust against mechanical stress
– output turns low with magnetic south pole on branded
– short-circuit protected open-drain output
side of package
– operates with magnetic fields from DC to 10 kHz
– output state can change if magnetic field is removed
– on-chip temperature compensation circuitry mini-
mizes shifts in on and off points and hysteresis over
HAL502, HAL 503, HAL 505
temperature and supply voltage
– the decrease of magnetic flux density caused by rising – switching type: latch
temperature in the sensor system is compensated by – output turns low with magnetic south pole on branded
a built-in negative temperature coefficient of hystere- side of package
sis
– output state does not change if magnetic field is re-
– ideal sensor for ignition timing, anti-lock brake sys- moved
tems and revolution counting in extreme automotive
and industrial environments
HAL504, HAL 506, HAL 508
– EMC corresponding to DIN 40839
– switching type: unipolar
– output turns low with magnetic south pole on branded
side of package
– output turns high if magnetic field is removed

2 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Marking Code Solderability

– Package SOT-89A: according to IEC68-2-58


Type Temperature Range
– Package TO-92UA: according to IEC68-2-20
A E C

HAL501S,
501A 501E 501C VDD
HAL501UA 1

HAL502S, OUT
502A 502E 502C 3
HAL502UA

HAL503S,
503A 503E 503C
HAL503UA 2
GND
HAL504S,
504A 504E 504C
HAL504UA Fig. 1: Pin configuration

HAL 505S,
505A 505E 505C
HAL 505UA

HAL 506S, HAL50x


HAL5xx
506A 506E 506C
HAL 506UA VDD Reverse Temperature
Hysteresis
Short Circuit &
Voltage & Dependent Overvoltage
Overvoltage Control
1 Bias Protection
HAL 508S, Protection
508A 508E 508C
HAL 508UA
Hall Plate
Comparator OUT
Switch Output
3

Operating Junction Temperature Range

A: TJ = –40 °C to +170 °C
Clock
E: TJ = –40 °C to +100 °C
GND
C: TJ = 0 °C to +100 °C 2

Designation of Hall Sensors Fig. 2: HAL50x block diagram

HALXXXPP-T
Temperature Range: A, E, or C
Package: UA for TO-92UA,
S for SOT-89A
Type: 501...506, 508

Example: HAL501UA-E
→ Type: 501
→ Package: TO-92UA
→ Temperature Range: TJ = –40 °C to +100 °C

MICRONAS INTERMETALL 3
HAL501...HAL506,
HAL508

Functional Description Outline Dimensions

This Hall effect sensor is a monolithic integrated circuit


that switches in response to magnetic fields. If a 4.5 +0.1
sensitive area
0.1 +0.05 2.25
magnetic field with flux lines at right angles to the 1.7
position of hall sensor
referenced to the
0.7
sensitive area is applied to the sensor, the biased Hall 2 0.95 center of package
x = 0 ± 0.1 mm
plate forces a Hall voltage proportional to this field. The y = 0.3 ± 0.1 mm
3.1 +0.2 2.5 +0.1 (0.25 mm x 0.12 mm)
Hall voltage is compared with the actual threshold level 4.0 ±0.25
in the comparator. The temperature-dependent bias 1 2 3
0.4 0.4
increases the supply voltage of the Hall plates and 1.5 +0.1
top view
adjusts the switching points to the decreasing induction 0.4
1.5
of magnets at higher temperatures. If the magnetic field
3.0
exceeds the threshold levels, the open drain output
switches to the appropriate state. The built-in hysteresis
branded side
eliminates oscillation and provides switching behavior of 10°

output without bounce.

Magnetic offset caused by mechanical stress is com- max. 0.05 –0.05

pensated for by using the “switching offset compensa- 10°

tion technique”. Therefore, an internal oscillator pro-


vides a two phase clock. The hall voltage is sampled at Fig. 4:
the end of the first phase. At the end of the second Plastic Small Outline Transistor Package
phase, both sampled and momentary hall voltages are (SOT-89A)
averaged and compared with the actual switching point. Weight approximately 0.04 g
Subsequently, the open drain output switches to the ap- Dimensions in mm
propriate state. The time from crossing the magnetic
switch level to switching of output can vary between zero
and 1/fosc.

Shunt protection devices clamp voltage peaks at the


Output-Pin and VDD-Pin together with external series
resistors. Reverse current is limited at the VDD-Pin by an
internal series resistor up to –15 V. No external reverse 1.5+0.1 4.06+0.1
sensitive area
protection diode is needed at the VDD-Pin for values 2.03
position of hall sensor
0.3 referenced to the
ranging from 0 V to –15 V. center of package
1.0 x = 0 ± 0.1 mm
y = 0.5 ± 0.1 mm
3+0.1 (0.25 mm x 0.12 mm)

fosc

1 2 3
t 12.7
0.36 min.
B

BON 0.4

t 1.27 1.27

VOUT 2.54
VOH

VOL branded side

t
45° 0.8
IDD

Fig. 5:
Plastic Transistor Single Outline Package
1/fosc = 16 µs tf t (TO-92UA)
Weight approximately 0.12 g
Dimensions in mm
Fig. 3: Timing diagram

4 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Absolute Maximum Ratings

Symbol Parameter Pin No. Min. Max. Unit

VDD Supply Voltage 1 –15 281) V

–VP Test Voltage for Supply 1 –242) – V

–IDD Reverse Supply Current 1 – 501) mA

IDDZ Supply Current through 1 –3003) 3003) mA


Protection Device

VOH Output High Voltage 3 – 281) V

IO Continuous Output On Current 3 – 30 mA

IOmax Peak Output On Current 3 – 2503) mA

IOZ Output Current through 3 –3003) 3003) mA


Protection Device

TS Storage Temperature Range –65 150 °C

TJ Junction Temperature Range –40 150 °C


–40 1704)
1) as long as T max is not exceeded
J
2) with a 220 Ω series resistance at pin 1 corresponding to test circuit 1
3) t < 2 ms
4) t < 1000h

Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-
mum ratings conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol Parameter Pin No. Min. Typ. Max. Unit

VDD Supply Voltage 1 3.8 – 24 V

IO Continuous Output On Current 3 0 – 20 mA

Extended Operational Range


Within the extended operating range, the ICs operate as mentioned in the functional description. The functionality has
been tested on samples, whereby the characteristics may lie outside the specified limits.

Symbol Parameter Pin No. Min. Typ. Max. Unit

VDD Supply Voltage 1 3.3 – 25 V

IO Continuous Output On Current 3 – – 30 mA

MICRONAS INTERMETALL 5
HAL501...HAL506,
HAL508

Electrical Characteristics at TJ = –40 °C to +170 °C , VDD = 3.8 V to 24 V, as not otherwise specified


Typical Characteristics for TJ = 25 °C and VDD = 12 V

Symbol Parameter Pin No. Min. Typ. Max. Unit Test Conditions

IDD Supply Current 1 2.6 3.2 3.8 mA TJ = 25 °C

IDD Supply Current over 1 1.6 3.2 5.2 mA


Temperature Range

VDDZ Overvoltage Protection 1 – 28.5 32 V IDD = 25 mA , TJ = 25 °C,


at Supply t = 20 ms

VOZ Overvoltage Protection at Output 3 – 28 32 V IOH = 25 mA , TJ = 25 °C,


t = 20 ms

VOL Output Voltage 3 – 130 180 mV IOL = 20 mA, TJ = 25 °C,


VDD = 4.5 V to 24 V

VOL Output Voltage over 3 – 130 400 mV IOL = 20 mA


Temperature Range

IOH Output Leakage Current 3 – 0.06 0.1 µA B< BOFF, TJ = 25 °C,


VOH = 3.8 to 24 V

IOH Output Leakage Current over 3 – – 10 µA B< BOFF, TJ ≤ 150 °C,


Temperature Range VOH = 3.8 to 24 V

fosc Internal Oscillator – 52 62.5 73 kHz TJ = 25 °C,


Chopper Frequency VDD = 4.5 V to 24 V

fosc Internal Oscillator Chopper Fre- – 45 62.5 79 kHz VDD = 3.8 V to 24 V


quency over Temperature Range

ten(O) Enable Time of Output after 1 – 30 70 µs VDD = 12 V, B < BON – 2 mT,


Setting of VDD B > BOFF + 2 mT

tr Output Rise Time 3 – 75 400 ns VDD = 12 V, RL = 820 Ohm,


CL = 20 pF

tf Output Fall Time 3 – 50 400 ns VDD = 12 V, RL = 820 Ohm,


CL = 20 pF

RthJSB Thermal Resistance Junction – – 150 200 K/W Fiberglass Substrate


case to Substrate Backside 30 mm x 10 mm x 1.5mm,
SOT-89A pad size see Fig. 7

RthJA Thermal Resistance Junction – – 150 200 K/W


case to Soldering Point
TO-92UA

6 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Magnetic Characteristics at TJ = –40 °C to +170 °C, VDD = 3.8 V to 24 V,


Typical Characteristics for VDD = 12 V

Magnetic flux density values of switching points.


Positive flux density values refer to the magnetic south pole at the branded side of the package.

Parameter –40 °C 25 °C 100 °C 170 °C Unit


Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.

On point BON
HAL501 –0.8 0.65 2.5 –0.35 0.63 2.25 –0.88 0.59 2.5 –0.9 0.55 2.5 mT
HAL502 1 3 5 1 2.75 4.5 0.95 2.6 4.4 0.9 2.4 4.3 mT
HAL503 64
6.4 86
8.6 10 8
10.8 6 8 10 56
5.6 72
7.2 97
9.7 51
5.1 64
6.4 93
9.3 mT
HAL504 10.3 13 15.7 9.5 12 14.5 9 11.1 14.1 8.5 10.2 13.7 mT
HAL505 11.8 15 18.3 11 14 17 10.2 13 16.6 9.4 12 16.1 mT
HAL506 4.3 5.9 7.7 3.8 5.5 7.2 3.6 5.1 7 3.4 4.7 6.8 mT
HAL508 15.5 19.2 21.9 15 18 20.7 13.9 16.65 20.4 12.7 15.3 20 mT

Off point BOFF


HAL501 –2.5 –0.65 0.8 –2.25 –0.63 0.35 –2.5 –0.59 0.88 –2.5 –0.55 0.9 mT
HAL502 –5 –3 –1 –4.5 –2.75 –1 –4.4 –2.6 –0.95 –4.3 –2.4 –0.9 mT
HAL503 –10.8 –8.6 –6.4 –10 –8 –6 –9.7 –7.2 –5.6 –9.3 –6.4 –5.1 mT
HAL504 5.3 7.5 9.6 5 7 9 4.6 6.45 8.75 4.2 5.9 8.5 mT
HAL505 –18.3 –15 –11.8 –17 –14 –11 –16.6 –13 –10.2 –16.1 –12 –9.4 mT
HAL506 2.1 3.8 5.4 2 3.5 5 1.85 3.3 4.9 1.7 3 4.7 mT
HAL508 14 17 20 13.5 16 19 12.5 14.8 18.7 11.4 13.6 18.3 mT

Hysteresis BHYS
HAL501 0.5 1.3 2 0.5 1.25 1.9 0.5 1.18 1.85 0.5 1.1 1.8 mT
HAL502 4.5 6 7.2 4.5 5.5 7 4 5.2 6.8 3.5 4.8 6.8 mT
HAL503 14.6 17.2 20.6 13.6 16 18 12.3 14.8 17.6 11 13.6 17.6 mT
HAL504 4.4 5.4 6.5 4 5 6.5 3.6 4.7 6.4 3.2 4.3 6.4 mT
HAL505 26 30 34 24 28 32 22 26 31.3 20 24 31.3 mT
HAL506 1.6 2.1 2.8 1.5 2 2.7 1.2 1.9 2.6 1.0 1.7 2.6 mT
HAL508 1.6 2.1 2.8 1.5 2 2.7 1.2 1.85 2.6 1.0 1.7 2.6 mT

Magnetic Offset
(BON + BOFF)/2
HAL501 – 0 – –1.3 0 1.3 – 0 – – 0 – mT
HAL502 – 0 – –1.5 0 1.5 – 0 – – 0 – mT
HAL503 – 0 – –1.5 0 1.5 – 0 – – 0 – mT
HAL504 – 10.1 – 7.2 9.5 11.8 – 8.75 – – 8 – mT
HAL505 – 0 – –1.5 0 1.5 – 0 – – 0 – mT
HAL506 – 4.8 – 3 4.5 6.2 – 4.18 – – 3.85 – mT
HAL508 – 18.1 – 14 17 20 – 15.8 – – 14.5 – mT

5.0

2.0
Output Voltage

2.0

BOFF min BHYS BON max


1.0

Fig. 6: Definition of magnetic switching points and Fig. 7: Recommended pad size SOT-89A
hysteresis Dimensions in mm

MICRONAS INTERMETALL 7
HAL501...HAL506,
HAL508

Note: In the following diagrams “Magnetic switch points


versus ambient temperature” on pages 8 and 9, the Magnetic switch points
curves for BONmin, BONmax, BOFFmin, and BOFFmax versus temperature
refer to junction temperature, whereas typical curves
refer to ambient temperature.
mT HAL501
6

BON
BOFF 4

BONmax
2 BONtyp

BOFFmax BOFFtyp
0

BONmin
–2
BOFFmin

–4
VDD = 3.8 V
VDD = 4.5 V... 24 V
–6
–50 0 50 100 150 200 °C

TA, TJ

Magnetic switch points Magnetic switch points


versus temperature versus temperature

mT HAL502 mT HAL503
6 12
BONmax
BONmax 10
BON BON
BOFF 4 8
BOFF
BONtyp
6
BONtyp BONmin
2 4
BONmin
2
VDD = 3.8 V VDD = 3.8 V
0 0
VDD = 4.5 V... 24 V VDD = 4.5 V... 24 V
–2
BOFFmax
–2 –4
BOFFtyp BOFFmax
–6
BOFFtyp
–4 –8
BOFFmin –10
BOFFmin
–6 –12
–50 0 50 100 150 200 °C –50 0 50 100 150 200 °C

TA, TJ TA, TJ

8 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Magnetic switch points Magnetic switch points


versus temperature versus temperature

mT HAL504 mT HAL505
18 20
BONmax
16
BON BON 15
BOFF BONmax BOFF BONtyp
14
10
BONmin
12
5
BONtyp VDD = 3.8 V
10 BONmin VDD = 4.5 V... 24 V
0
8 BOFFmax

–5
6 BOFFtyp
BOFFmax
–10
4 BOFFmin
BOFFtyp
VDD = 3.8 V –15
2
VDD = 4.5 V... 24 V
BOFFmin
0 –20
–50 0 50 100 150 200 °C –50 0 50 100 150 200 °C

TA, TJ TA, TJ

Magnetic switch points Magnetic switch points


versus temperature versus temperature

mT HAL506 mT HAL508
8 25

BONmax
BON 7 BON BONmax
BOFF BOFF 20
BOFFmax
6

5 BONtyp BONtyp
15
BOFFmax
BOFFtyp
4 BONmin BONmin
BOFFmin
BOFFtyp 10
3

BOFFmin
2 VDD = 3.8 V
5
VDD = 3.8 V VDD = 4.5 V... 24 V
1
VDD = 4.5 V... 24 V

0 0
–50 0 50 100 150 200 °C –50 0 50 100 150 200 °C

TA, TJ TA, TJ

MICRONAS INTERMETALL 9
HAL501...HAL506,
HAL508

Supply current Supply current


versus supply voltage versus supply voltage

mA HAL50x mA HAL50x
25 5.0

4.5
20
IDD TA = –40 °C IDD 4.0
TA = –40 °C
15
TA = 25 °C
3.5
TA=170 °C TA = 25 °C
10
3.0
TA = 100 °C
5 2.5
TA = 170 °C
2.0
0

1.5
–5
1.0
–10
0.5

–15 0
–15–10 –5 0 5 10 15 20 25 30 35 V 1 2 3 4 5 6 7 8 V

VDD VDD

Supply current Internal chopper frequency


versus ambient temperature versus supply voltage

mA HAL50x kHz HAL50x


5 100

90

IDD 4 fosc 80

VDD = 24 V
70 TA = 25 °C
VDD = 12 V
3 60 TA = –40 °C
TA = 170 °C
50

2 VDD = 3.8 V 40

30

1 20

10

0 0
–50 0 50 100 150 200 °C 0 5 10 15 20 25 30 V

TA VDD

10 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Internal chopper frequency Internal chopper frequency


versus supply voltage versus ambient temperature

kHz HAL50x kHz HAL50x


100 100

90 90

fosc 80 fosc 80
VDD = 3.8 V
70 TA = 25 °C 70
TA = –40 °C
60 60
TA = 170 °C VDD = 4.5 V... 24 V
50 50

40 40

30 30

20 20

10 10

0 0
3 4 5 6 7 8 V –50 0 50 100 150 200 °C

VDD TA

Output low voltage Output low voltage


versus supply voltage versus supply voltage

mV HAL50x mV HAL50x
400 600
IO = 20 mA IO = 20 mA

350
500
VOL VOL
300

TA = 170 °C 400
250

TA = 100 °C
200 300
TA = 170 °C

150 TA = 25 °C TA = 100 °C
200
TA = –40 °C
100 TA = 25 °C
TA = –40 °C
100
50

0 0
0 5 10 15 20 25 30 V 3 4 5 6 7 V

VDD VDD

MICRONAS INTERMETALL 11
HAL501...HAL506,
HAL508

Output low voltage Output high current


versus ambient temperature versus output voltage

mV HAL50x µA HAL50x
400 104

103
VDD = 3.8 V
VOL IOH 102
300 TA = 170 °C
VDD = 4.5 V 101
TA = 150 °C
VDD = 24 V
100

200 10–1 TA = 100 °C

10–2
TA = 25 °C
10–3
100
10–4
TA = –40 °C
10–5

0 10–6
–50 0 50 100 150 200 °C 15 20 25 30 35 V

TA VOH

Output leakage current


versus ambient temperature

µA HAL50x
102

101
IOH VOH = 24 V

100

10–1

VOH = 3.8 V
10–2

10–3

10–4

10–5
–50 0 50 100 150 200 °C

TA

12 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL501 mT HAL501
3 3

BON BON
BOFF 2 BON 2
BOFF
BON

1 1

0 0

–1 –1 BOFF
BOFF
TA = –40 °C TA = –40 °C
TA = 25 °C TA = 25 °C
–2 –2
TA = 100 °C TA = 100 °C
TA = 170 °C TA = 170 °C
–3 –3
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL502 mT HAL502
6 6

BON BON
BOFF 4 4
BOFF
BON BON

2 2
TA = –40 °C TA = –40 °C
TA = 25 °C TA = 25 °C
0 0
TA = 100 °C TA = 100 °C
TA = 170 °C TA = 170 °C
–2 –2

BOFF BOFF
–4 –4

–6 –6
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

MICRONAS INTERMETALL 13
HAL501...HAL506,
HAL508

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL503 mT HAL503
12 12

BON BON
BON BON
BOFF 8 8
BOFF

4 4
TA = –40 °C TA = –40 °C
TA = 25 °C TA = 25 °C
0 0
TA = 100 °C TA = 100 °C
TA = 170 °C TA = 170 °C
–4 –4

–8 –8
BOFF BOFF

–12 –12
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL504 mT HAL504
18 18

16 16
BON BON
BOFF BOFF
14 14
BON BON
12 12

10 10

8 8

6 6
BOFF BOFF
TA = –40 °C TA = –40 °C
4 4
TA = 25 °C TA = 25 °C

2 TA = 100 °C 2 TA = 100 °C
TA = 170 °C TA = 170 °C
0 0
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

14 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL505 mT HAL505
20 20

BON BON
BON 15 BON
15
BOFF BOFF
10 10

5 5
TA = –40 °C TA = –40 °C
TA = 25 °C TA = 25 °C
0 0
TA = 100 °C TA = 100 °C
TA = 170 °C TA = 170 °C
–5 –5

BOFF BOFF
–10 –10

–15 –15

–20 –20
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL506 mT HAL506
8 8

BON BON
BOFF BOFF BON
BON
6 6

4 4

BOFF BOFF
TA = –40 °C TA = –40 °C
2 2
TA = 25 °C TA = 25 °C
TA = 100 °C TA = 100 °C
TA = 170 °C TA = 170 °C

0 0
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

MICRONAS INTERMETALL 15
HAL501...HAL506,
HAL508

Magnetic switch points Magnetic switch points


versus supply voltage versus supply voltage

mT HAL508 mT HAL508
25 25

BON BON
BOFF 20 BOFF 20 BON
BON

15 15

BOFF BOFF

10 10
TA = –40 °C TA = –40 °C
TA = 25 °C TA = 25 °C
TA = 100 °C TA = 100 °C
5 5
TA = 170 °C TA = 170 °C

0 0
0 5 10 15 20 25 30 V 3 3.5 4.0 4.5 5.0 5.5 6.0 V

VDD VDD

Spectrum of supply current Spectrum at supply voltage

dBµA HAL50x dBµV HAL50x


30 80
VDD = 12 V VP = 12 V
TA = 25 °C TA = 25 °C
Quasi-Peak- 70 Quasi-Peak-
20 Measurement Measurement
IDD VDD
test circuit 2
max. spurious 60
signals
10
50
max. spurious
signals
0 40

30
–10

20

–20
10

–30 0
0.01 0.10 1.00
1 10.00
10 100.00
100 1000.00
1000 MHz 0.01 0.10 1.00
1 10.00
10 100.00
100 1000.00
1000 MHz

f f

16 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

Application Note Test Circuits for Electromagnetic Compatibility


Test pulses VEMC corresponding to DIN 40839.
For electromagnetic immunity, it is recommended to ap-
ply a 4.7 nF capacitor between VDD (pin 1) and Ground
(pin 2). RV

220 Ω
For automotive applications, a 220 Ω series resistor to
pin 1 is recommended. RL 1.2 kΩ
1 VDD
VEMC
The series resistor and the capacitor should be placed VP
OUT
as close as possible to the IC. 3
4.7 nF 20 pF
Ambient Temperature
2 GND
Due to the internal power dissipation, the temperature
on the silicon chip (junction temperature TJ) is higher
than the temperature outside the package (ambient tem- Fig. 8: Test circuit 2: test procedure for class A
perature TA).

TJ = TA + ∆T

At static conditions, the following equations are valid:


RV
– for SOT-89A: ∆T = IDD * VDD * RthJSB
220 Ω RL 680 Ω
– for TO-92UA: ∆T = IDD * VDD * RthJA 1 VDD
OUT
VEMC
For typical values, use the typical parameters. For worst 3
case calculation, use the max. parameters for IDD and
4.7 nF
Rth, and the max. value for VDD from the application.

2 GND

Fig. 9: Test circuit 1: test procedure for class C

MICRONAS INTERMETALL 17
HAL501...HAL506,
HAL508

Interferences conducted along supply lines in 12 V onboard systems

Product standard: DIN 40839 part 1


Pulse Level Us in V Test Pulses/ Function Remarks
circuit Time Class

1 IV –100 1 5000 C 5 s pulse interval

2 IV 100 1 5000 C 0.5 s pulse interval

3a IV –150 2 1h A

3b IV 100 2 1h A

4 IV –7 2 5 A

5 IV 86.5 1 10 C 10 s pulse interval

Electrical transient transmission by capacitive and inductive coupling via lines other than the supply lines

Product standard: DIN 40839 part3


Pulse Level Us in V Test Pulses/ Function Remarks
circuit Time Class

1 IV –30 2 500 A 5 s pulse interval

2 IV 30 2 500 A 0.5 s pulse interval

3a IV –60 2 10 min A

3b IV 40 2 10 min A

Radiated Disturbances

Product standard: DIN 40839 part4

Test Conditions
– Temperature: Room temperature (22 ... 25 °C)
– Supply voltage: 13 V
– Lab Equipment: TEM cell 220 MHz (VW standard)
with adaptor board 455 mm, device 80 mm over ground
– Frequency range: 5 ... 220 MHz; 1 MHz steps
– Test circuit 2 with RL = 1.2 kΩ
– tested with static magnetic fields

Tested Devices and Results


Type Field Modulation Result
Strength

HAL 50x > 200 V/m – output voltage stable on the level high or low1)

HAL 50x > 200 V/m 1 kHz 80 % output voltage stable on the level high or low1)
1) low level < 0.4 V, high level > 90% of VDD

18 MICRONAS INTERMETALL
HAL501...HAL506,
HAL508

MICRONAS INTERMETALL 19
HAL501...HAL506,
HAL508

Data Sheet History

1. Final data sheet: “HAL 501 ... HAL506, HAL 508 Hall
Effect Sensor ICs”, May 5, 1997, 6251-405-1DS. First
release of the final data sheet.

MICRONAS INTERMETALL GmbH All information and data contained in this data sheet are with-
Hans-Bunte-Strasse 19 out any commitment, are not to be considered as an offer for
D-79108 Freiburg (Germany) conclusion of a contract nor shall they be construed as to
P.O. Box 840 create any liability. Any new issue of this data sheet invalidates
D-79008 Freiburg (Germany) previous issues. Product availability and delivery dates are ex-
Tel. +49-761-517-0 clusively subject to our respective order confirmation form; the
Fax +49-761-517-2174 same applies to orders based on development samples deliv-
E-mail: docservice@intermetall.de ered. By this publication, MICRONAS INTERMETALL GmbH
Internet: http://www.intermetall.de does not assume responsibility for patent infringements or
other rights of third parties which may result from its use.
Printed in Germany Reprinting is generally permitted, indicating the source. How-
by Simon Druck GmbH & Co., Freiburg (05/97) ever, our prior consent must be obtained in all cases.
Order No. 6251-405-1DS

20 MICRONAS INTERMETALL

You might also like