Theoretical  Physics  KTH  June  12,  2007
Quantum  Mechanics  Formula  Collection
1   Vectors  and  operators
  To  a  ket  vector  |V   corresponds  a  dual  bra  vector V |
To  an  operator    corresponds  an  adjoint  operator  
:   |V  V |
Hermitean  operator:   
  = .
Unitary  operator:   
 = 1, 
  = 1
  Completeness  relations:
i
|ii| = I,
_
 ||d  = I
  Fourier  transforms:
f(k) =
  1
(2)
1/2
_
  
e
ikx
f(x)dx,   f(x) =
  1
(2)
1/2
_
  
e
ikx
f(k)dk
  Dirac  delta  function:
_
f(x
)(x x
)dx
  = f(x),  (x x
) = (x
x),
(ax) = (x)/|a|,
  d
dx
(x x
) = 
  d
dx
(x x
) = (x x
)
  d
dx
(x x
) =
  d
dx
(x x
),  step  function:   (x) = 0, x < 0; (x) = 1, x > 0
1
2
_
e
ik(x
x)
dk = (x
x)
2   Classical   mechanics  and  electromagnetism
  Lagranges  equations:
  L
q
i
  d
dt
L
d  q
i
= 0
Lagrangian:   L = T V ,  Action:   S  =
_
t
1
t
0
Ldt
  Canonical  momentum  conjugate  to  q
i
:   p
i
  =
  L
  q
i
Generalized  force  conjugate  to  q
i
:   F
i
  =
  L
q
i
  Hamiltonian:   H  =
i
p
i
  q
i
L = T  + V  =
  p
2
2m
  + V (r)
Hamiltons  equations:    q
i
  =
  H
p
i
,    p
i
  = 
H
q
i
  Force  on  charge  q:   F = q
_
E +
  v
c
 B
_
  (no  factor  c  in  SI  units)
Electric  eld:   E =  
  1
c
A
t
 .   Magnetic  eld  B = A
Electromagnetic  Lagrangian:   L =
  1
2
mv
2
q +
  q
c
v  A
Electromagnetic  Hamiltonian:   H  =
  |pqA/c|
2
2m
  + q
3   Basic  Quantum  Mechanics
  Schrodinger  equation:
i
|(t)
t
  = H|(t)
1
  Expansion  in  discrete  eigenfunction  basis: | =
i
|
i
i
|.
Expectation  value:    =
i
|
i
||
2
.   Probability  for  a  system  in  state
|  to  be  in  state |
i
:   P(
i
) = |
i
||
2
  Expansion  in  continuous  eigenfunction  basis: | =
_
  d||.
Expectation  value:     =
_
  d|||
2
.   Probability  for  a  system  in  state
|  to  have  a  value  for    between    and   + d  is  P()d,   where  P()  =
|||
2
  Canonical  commutation  relation:   [x, p] = i
  Position  basis: x| = (x), x|x| = x(x), x|p| = i
d(x)
dx
  Momentum  basis: p| = (p), p|p| = p(p), p|x| = i
d(p)
dp
  Ehrenfests  theorem:   i
  d
dt
 = [, H]
  Probability  conservation:
  P
t
 =  j
Probability  current:   j =
  
2mi
(
)
  Density  matrix:    =
i
p
i
|ii|
Ensemble  average:  =
i
p
i
i||i = Tr ()
where  Tr   denotes  summation  of  the  diagonal  matrix  elements
4   Free  particle
  Plane  waves:   
p
(x) =
  e
ipx/
(2)
1/2
  Propagator  U(x, x
, t) = x|U(t)|x
 =
_
  m
2it
_
1/2
e
im(xx
)
2
/2t
5   Harmonic  oscillator
  Hamiltonian  H  =
  p
2
2m
  +
  m
2
x
2
2
  Creation  and  annihilation  operators
a
  =
_
m
2
_
x 
  ip
m
_
, a =
_
m
2
_
x +
  ip
m
_
, [a, a
] = 1
x =
_
  
2m
_
1/2
(a
 +a), p = i
_
m
2
_
1/2
(a
a)
  Number  operator:   N  = a
a
Spectrum:   N|n = n|n, n = 0, 1, 2, 3, ...
a|n = (n)
1/2
|n 1  ,  a
|n = (n + 1)
1/2
|n + 1
  Energy  eigenstates:   H  = (N  +
  1
2
)
H|n = E
n
|n, E
n
  = (n +
  1
2
)
  Groundstate:   
0
(x) = x|0 =
  1
x
0
exp 
1
2
_
x
x
0
_
2
,  x
2
0
  =
  
m
2
6   Path  integrals
  Propagator:   U(x, x
, t) =
_
[Dx] exp
_
i
_
t
0
 dtL(x,   x)
_
where
_
[Dx] = lim
N
_
  m
2i
_
N/2
N1
n=1
_
  dx
n
,   = t/N.
7   Uncertainty  relations
  Uncertainty:    = [( )
2
]
1/2
General  uncertainty  relation:   [, ] = i  
  ||
2
Position-momentum  uncertainty  relation:   xp  /2
Energy-time  uncertainty  relation:   Et  /2
8   Many  particles
  Center  of   mass  coordinates:   x
CM
  =  (m
1
x
1
  + m
2
x
2
)/M,   p
CM
  =  p
1
  + p
2
,
M  = m
1
 + m
2
,
Relative  coordinates:   x = x
1
x
2
, p =   x,   = m
1
m
2
/M
9   Translations  and  momentum
  Translation  operator:   T(a)|x = |x + a
Translated  wave  function: x|T(a)| = (x a)
Finite  translations:   T(a) = e
iap/
10   Rotations  and  angular  momentum
  Spatial  rotation  operator:   R(k)| = | + 
Rotated  wave  function: |R(k)| = ( )
Finite  rotations:   R(n) = e
inJ/
  Commutation  relations:   [
 
J
x
,
  
J
y
] = i
 
J
z
  [
 
J
z
,
  
J
2
] = 0,
  
J
2
=
  
J
2
x
 +
  
J
2
y
  +
  
J
2
z
  Spectrum  m = j, ..., j
  
J
2
|j, m = j(j + 1)
2
|j, m,
  
J
z
|j, m = m|j, m
  Raising  and  lowering  operators
  
J
  =
  
J
x
i
 
J
y
:
j, m
|j, m =
_
j(j + 1) m(m1)
m
,m1
3
11   Rotation  invariant  problems
  Schrodinger  equation  in  spherical  coordinates:
_
2
2
1
r
2
r
r
2  
r
  +
  L
2
2mr
2
  + V (r)
_
R
El
(r)Y
m
l
  (, ) = ER
El
(r)Y
m
l
  (, )
  Spherical  harmonics:
L
2
Y
m
l
  (, ) = l(l + 1)
2
Y
m
l
  (, )
|L
z
| = i
  
() = m(), () = e
im
12   Hydrogen  like  atoms
  V (r) = Ze
2
/r,  Ze =  nuclear  charge.   SI  units:   e
2
e
2
/4
0
  Energy:   E
n
  = 
mZ
2
e
4
2
2
n
2
 , n = 1, 2, 3, . . .
  Hydrogen  (Z  = 1):   E
n
  = 
13.6
n
2
  eV= 
  1
n
2
  Ry
  E
n
  is  n
2
-fold  degenerate.
R
n,l=n1
  peaks  at  r = n
2
a
0
/Z
Bohr  radius:   a
0
  =  
2
/me
2
= 0.529
  
A  for  H.
13   Spin
  Spin  1/2  operators:   S =
  
2
,   = (
x
, 
y
, 
z
)
  Pauli  spin  matrices:
x
  =
_
  0   1
1   0
_
, 
y
  =
_
  0   i
i   0
_
, 
z
  =
_
  1   0
0   1
_
  Rotation  matrix:
R(n) = exp (in  /2) =
_
  cos(/2)   sin(/2)e
i
sin(/2)e
i
cos(/2)
_
  Magnetic  moment:   H  =   B =
  ge
2mc
S  B
  Spin  1  matrices:
S
x
  =
  
2
_
_
0   1   0
1   0   1
0   1   0
_
_
, S
y
  =
  
2
_
_
0   i   0
i   0   i
0   i   0
_
_
, S
z
  =  
_
_
1   0   0
0   0   0
0   0   1
_
_
14   Addition  of  angular  momenta
  Total  angular  momentum  operator:   J = J
1
 +J
2
  Addition  of  two  spin-1/2.   Basis  states  in  total  spin |s, m-basis:
4
singlet: |0, 0 =
  1
2
| + 
  1
2
| +
triplet: |1, 1 = | + +, |1, 0 =
  1
2
| + +
  1
2
| +, |1, 1 = | 
  General  case.   Vector  coupling  model:
|j
1
j
2
jm =
m
1
m
2
|j
1
j
2
m
1
m
2
j
1
j
2
m
1
m
2
|j
1
j
2
jm
Clebsch-Gordan  coecient  is  zero  unless:
m = m
1
 +m
2
  and |j
1
j
2
|  j  j
1
 + j
2
15   Variational   method
  Variational  trial  wave  function:   (x, ).
Ground  state  estimate:   E
0
  min
E()
16   Time  independent  perturbations
  H  = H
0
+ H
1
,  H
0
=  unperturbed  Hamiltonian,  H
1
=  small  perturbation
E
0
n
, |n
0
  unperturbed  energies  and  eigenstates
E
1
n
, |n
1
  rst  order  corrections  to  energies  and  eigenstates,  etc
  First  and  second  order  corrections  to  energy:
E
1
n
  = n
0
|H
1
|n
0
, E
2
n
  =
m=n
|n
0
|H
1
|m
0
|
2
E
0
n
E
0
m
  First  order  correction  to  state:
|n
1
 =
m=n
|m
0
m
0
|H
1
|n
0
E
0
n
E
0
m
17   Time  dependent  perturbation  theory
  H(t) = H
0
+ H
1
(t),  H
0
=  time  independent  unperturbed  Hamiltonian
H
1
(t) =  small  time-dependent  perturbation  acting  from  time  t
0
E
0
n
, |n
0
  unperturbed  energies  and  eigenstates
E
1
n
, |n
1
  rst  order  corrections  to  energies  and  eigenstates,  etc
  Expand  solution  as |(t) =
n
d
n
(t)e
iE
0
n
t/
|n
0
To  rst  order:   d
f
(t) = 
fi
_
t
t
0
f
0
|H
1
(t
)|i
0
e
i
fi
t
dt
, 
fi
  = (E
0
f
 E
0
i
 )/
 Fermis golden rule:   Transition rate due to a periodic perturbation H
1
(t) =
H
1
e
it
,  averaged  over  long  times:   R
if
  =
  2
|f
0
|H
1
|i
0
|
2
(E
0
f
 E
0
i
 )
5
18   Pictures
  Schrodinger  picture
|
S
(t) = U
S
(t, t
0
)|
S
(t
0
)
i
  d
dt
U
S
(t) = H
S
U
S
(t)
i
  d
dt
S
(t)|O
S
|
S
(t) = 
S
(t)|[O
S
, H
S
]|
S
(t)
  Heisenberg  picture
|
H
 = U
S
(t, t
0
)|
S
(t) = |
S
(t
0
)
H
(t) = U
S
U
S
,   i
d
H
dt
  = [
H
, H
H
]
  Interaction  picture
|
I
(t) = U
0
S
  (t, t
0
)|
S
(t)
I
  = U
0
S
  
S
U
0
S
i
d
I
dt
  = [
I
, H
0
I
]
i
  d
dt
U
I
  = H
1
I
U
I
U
I
(t, t
0
) = 1 
  i
_
t
t
0
H
1
I
(t
)U
I
(t
, t
0
)dt
  = 1 
  i
_
t
t
0
H
1
I
(t
)dt
 + O(H
2
I
)
19   Quantization  of  EM  eld
Classical  Lagrangian:   L =
  1
2
mv
2
+
  q
c
A v q
Canonical  momentum:   mv = p qA/c
Classical  Hamiltonian:   H  =
  1
2m
(p qA/c)
2
+ q
Coulomb  gauge:  A = 0
Vector  potential  operator  and  its  canonical  conjugate
A =
_
_
  c
2
4
2
_
1/2
[a(k)(k)e
ikr
+ a
(k)(k)e
ikr
]d
3
k
 =
_
  1
i
_
  
64
4
c
2
_
1/2
[a(k)(k)e
ikr
a
(k)(k)e
ikr
]d
3
k
Commutator:   [a(k), a
(k
)] = 
,
 
3
(k k
)
(k)  polarization  vector,     =  photon  energy
p =  k =  photon  momentum
Hamiltonian:   H  =
_
[a
(k)a(k) + 1/2] d
3
k
20   Scattering  theory
  Lippmann-Schwinger  eq: | = | +
  1
EH
0
+i
V |
(x)  incoming  state,  (x)  scattered  state
(x) =
  1
(2)
3/2
_
e
ikx
+
  e
ikr
r
  f(k
, k)
_
f  scattering  amplitude,
  d
d
  = |f|
2
dierential  cross  section
6
  First  order  Born  approximation:
f
(1)
(k
, k) = 
  1
4
2m
2
_
  d
3
x
e
i(kk
)x
V (x
)
  Partial  wave  expansion:   for  r 
e
ikz
l=0
i
l
(2l + 1)
sin(kr l/2)
kr
  P
l
(cos )
(r) 
l=0
C
l
sin(kr l/2 +
l
(k))
kr
  P
l
(cos )
f() =
l=0
(2l + 1)
e
i
l
k
  sin(
l
)P
l
(cos )
  Optical  theorem:   Im  f( = 0) =
  k
4
21   Constants
elementary  charge   e = 1.602  10
19
C
electron  volt   1  eV  = 1.602  10
19
J
mass   m
e
  = 9.11  10
31
,  m
p
  = 1.67  10
27
,  m
n
  = 1.67  10
27
kg
magnetic  moment   
e
  = 9.28  10
24
,  
p
  = 1.41  10
26
,  
n
  = 4.49  10
26
Am
2
Planck  const    = h/2  = 1.05  10
34
Js
light  speed   c = 3.00  10
8
m/s
ne  structure  const    = e
2
/4
0
c = 1/137
Coulomb  law  const   1/4
0
  10
7
c
2
Bohr  radius   a
0
  = 5.29  10
11
m
Boltzmann  const   k
B
  = 1.38  10
23
J/K
22   Special   functions
  Harmonic  oscillator  wave  functions
(a
2
=  /m)   
0
(x) =
  1
(a
)
1/2
e
x
2
/2a
2
,   
1
(x) =
  1
(2a
)
1/2
2
_
x
a
_
e
x
2
/2a
2
2
(x) =
  1
(8a
)
1/2
_
2 4
_
x
a
_
2
_
e
x
2
/2a
2
,   
3
(x) =
  1
(48a
)
1/2
_
12
_
x
a
_
8
_
x
a
_
3
_
e
x
2
/2a
2
7
  Spherical  harmonics
Y
0
0
  =
_
  1
4
,   Y
0
1
  =
_
  3
4
 cos ,   Y
1
1
  = 
_
  3
8
 sin e
i
Y
0
2
  =
_
  5
16
(3 cos
2
1),   Y
1
2
  = 
_
15
8
 sin  cos e
i
,   Y
2
2
  =
_
  15
32
 sin
2
e
2i
  Legendre  polynomials
P
l
(cos ) =
_
  4
2l + 1
_
1/2
Y
0
l
  Hydrogen-like  radial  wave  functions
R
10
  = 2
_
Z
a
0
_
3/2
e
Zr/a
0
,   R
20
  = 2
_
  Z
2a
0
_
3/2
_
1 
  Zr
2a
0
_
e
Zr/2a
0
R
21
  =
  1
3
_
  Z
2a
0
_
3/2
Zr
a
0
e
Zr/2a
0
,   R
30
  = 2
_
  Z
3a
0
_
3/2
_
1 
  2Zr
3a
0
+
  2(Zr)
2
27a
2
0
_
e
Zr/3a
0
R
31
  =
  4
2
9
_
  Z
3a
0
_
3/2
Zr
a
0
_
1 
  Zr
6a
0
_
e
Zr/3a
0
,   R
32
  =
  2
2
27
5
_
  Z
3a
0
_
3/2
_
Zr
a
0
_
2
e
Zr/3a
0
  Spherical  Bessel  and  Neumann  functions
j
0
() =
  sin 
  ,   j
1
() =
  sin 
2
  
  cos 
  ,   j
2
() =
_
 3
3
 
  1
_
sin  
  3 cos 
0
() = 
cos 
  ,   
1
() = 
cos 
2
  
sin 
  ,   
2
() = 
_
 3
3
 
  1
_
cos 
3 sin 
2
8