0% found this document useful (0 votes)
2K views6 pages

2023 Online Paper Combined Maths

This document contains information regarding the G.C.E. Advanced Level examination in Combined Mathematics to be held in August 2023 in Sri Lanka. It provides instructions to candidates regarding the structure of the paper, which is divided into two parts (A and B). Part A contains multiple choice questions with one correct answer for each question. Part B requires numerical answers for each question. Candidates are advised to show working for answers in Part B. The paper contains 17 mathematics questions testing a range of concepts including algebraic equations, limits, derivatives, integrals, trigonometric functions and polynomials. Definitions, working and final answers are required for full marks.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
2K views6 pages

2023 Online Paper Combined Maths

This document contains information regarding the G.C.E. Advanced Level examination in Combined Mathematics to be held in August 2023 in Sri Lanka. It provides instructions to candidates regarding the structure of the paper, which is divided into two parts (A and B). Part A contains multiple choice questions with one correct answer for each question. Part B requires numerical answers for each question. Candidates are advised to show working for answers in Part B. The paper contains 17 mathematics questions testing a range of concepts including algebraic equations, limits, derivatives, integrals, trigonometric functions and polynomials. Definitions, working and final answers are required for full marks.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

AL/2023/10/S-I SCM ®

G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
Y%S ,xld úNd. fomd¾;fïka;j =
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
,yq;ifg; guPl;irj; jpizf;fsk;
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
Department of Examinations, Sri Lanka
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
-
wOHhk fmdÿ iy;sl m;% ^Wiia fm<& úNd.h" 2023 wf.dai; a =
Genaral Certificate of Examination (Adv. Level) Examination, August 2023 03
ixhqla; .Ks;h I meh ;=khs
Combined Mathematics I
10 S I Three hours

INDEX NUMBER
Wmfoia
a
 them follska iukaú; fõ'
fuu m%Yak m;%h fldgia
.
A fldgi ^m%Y.ak 1 - 10& iy B fldgi ^m%Yak 11 - 17&
 A fldgi
ish¨u m%Yakj,g ms<s;=re imhkak' tla tla m%Yakh i|yd Tfí ms<s;=re imhd we;s bfvys
,shkak' jeämqr bv wjYH fõ kï" Tng wu;r ,shk lvodis Ndú;d l< yelsh'
 B fldgi
m%Yak mylg muKla ms<s;=re imhkak' Tfí ms<s;=re imhd we;s lvodisj, ,shkak'
 kshñ; ld,h wjika jQ miq A fldgfiys ms<s;=re m;%h B fldgfiys ms<s;=re m;%hg Wäka
isák mßos fldgia fol wuqKd úNd. Yd,dêm;sg Ndr fokak'
 m%Yak m;%fhys B fldgi muKla úNd. Yd,dfjka msg;g f.k hdug Tng wjir we;'
 fuu m%Yak m;%fhys g u.ska .=re;ajc ;ajrKh olajhs'
mÍlaIljrekaf.a m%fhdackh i|yd muKs'
^10& ixhqla; .Ks;h I . Part A
fldgi m%Yak wxlh ,l=Kq
Part B
01
02 tl;=j
03
wjidk ,l=Kq
A 04
05
06 Final
07 Marks
08 wjidk ,l=Kq
09
10
11
B
12
13
14
15
16
17
tl;=j
m%;sY;h [fojeks msgqj n,kak'
S M A R T C O M B I N E D M A T H S ® -1-
1
2

A fldgi

❖ ish¨u m%Yakj,g ms<;


s =re imhkak'

01' 𝑥 2 + 𝑎𝑥 + 𝑏 = 0 ys uQ, 𝜆 yd 𝜇 fõ'

𝑏𝑥 2 − (𝑎2 − 2𝑏)𝑥 + 𝑏 = 0 ys uQ, 𝜆, 𝜇 weiqßka fidhkak'

1
02' 𝑥 4 + 2𝑥 3 − 6𝑥 2 + 2𝑥 + 1 = 0 iólrKh 𝑡 = 𝑥 + wdfoaYfhka úi`okak'
𝑥

𝑙𝑖𝑚 𝑥(𝑒 𝑥 −1)


03. w.hkak'
𝑥→0 1−cos 2𝑥

cos 2𝑥 𝑑2 𝑦 𝑑𝑦
04' 𝑦 = kï" 𝑥 𝑑𝑥 2 + 2 𝑑𝑥 + 4𝑥𝑦 = 0 nj fmkajkak'
𝑥

𝜋
05. 2 tan−1 𝑥 + tan−1 𝑥 3 = úi`okak'
2

1
06. 𝑦 = |2 𝑥 − 1| + |𝑥 − 4| iy 𝑦 = |6𝑥 − 𝑥 2 | m%i:
a dr tlu igykl w`Èkak' tkhska
1
|6𝑥 − 𝑥 2 | ≥ 𝑦 ≥ | 𝑥 − 1| + |𝑥 − 4| ;Dma; lrk m%foaYh w`ÿre lrkak'
2

07' oDv jia;=jla u; l%shdlrk tal;, n, hgf;a th


iu;=,s;j ;sfí kï ta i`oyd wjYH;d olajkak' wrh
5
𝑎 jQ taldldr 𝑊 nr f.da,hla tys jl% mDIaGfha 𝐴
2

,laIHfhka ;ka;=jlska t,a,d we;af;a rEmfha whqre th


iqug isria ì;a;shla iam¾Y jkfiah' ;ka;=j 𝐵 yd 𝐶
iqug wp, lmams folla by<ska f.dia wfkla fl<jf¾
𝑊′ Ndrhla t,a,d ;sfí kï túg moaO;sh iu;=,s;j 𝑤′
13
;sfnk úg§ 𝑊 ′ = 12 𝑊 nj fmkajkak' ;jo f.da,h

yd ì;a;sh w;r m%;sl%shdj fidhkak'^fuys 𝐴𝐵 = 4𝑎 fõ '&

DILSHAN MALLAWAARACHCHI
B.Sc.
3

08. 𝑂 uQ,hla wkqnoaO 𝑃 yd 𝑄 ,laIH 2l msysgqï ffoYsl 2𝑎 yd 2𝑏 fõ' 𝑂𝑃 yd 𝑂𝑄 ys uOH


,laIH ms<sfj,ska 𝑆 yd 𝑅 fõ' 𝑆𝑄 yd 𝑅𝑃 ys fþok ,laIHh 𝑋 fõ'𝑆𝑋: 𝑆𝑄 = 𝑚 yd
𝑅𝑋: 𝑅𝑃 = 𝑛 kï ⃗⃗⃗⃗⃗
𝑂𝑋 = 𝑎 + 𝑚(2𝑏 − 𝑎) yd ⃗⃗⃗⃗⃗
𝑂𝑋 = 𝑏 + 𝑛(2𝑎 − 𝑏) nj fmkajkak' tu`.ska
𝑚 yd 𝑛 ys w.hka wfmdaykh lrkak'

09. 𝐴𝐵𝐶 ;%sfldaKfha 𝐵𝐶, 𝐶𝐴, 𝐴𝐵 Èf.a 𝑃, 𝑄, 𝑆 n, l%shd lrhs' iïm%hqla; n,h ;%sfldaKfha
mßflakaøh yryd hhs kï 𝑃 cos 𝐴 + 𝑄 cos 𝐵 + 𝑆 cos 𝐶 = 0 nj fmkajkak'

10' ialkaOh 𝑀 𝑘𝑔 jQ laIu;dj 𝐻 𝑊 jQ r:hl p,s;hg ´kEu úgl§ m%;sfrdaOh 𝑅 fõ'


;srig 𝛼 fldaKhlska wdk; ud¾.hl by,g r:fha Wmßu m%fõ.h 𝑉 𝑚𝑠 −1 fõ' fuu
ud¾.fha my<g r:fha Wmßu fõ.h 2𝑉 𝑚𝑠 −1 fõ' 𝑅 ys w.h 𝑀, 𝑔 yd 𝛼 weiqfrka m%ldY
3𝐻
lrkak' th f,i m%ldY l< yels nj fmkajkak'
4𝑉

DILSHAN MALLAWAARACHCHI
B.Sc.
4
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
Y%S ,xld úNd. fomd¾;fïka;j =
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
,yq;ifg; guPl;irj; jpizf;fsk;
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
Department of Examinations, Sri Lanka
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
G.C.E. (A/L) Examination - ixhqla; .Ks;h - w'fmd'i' ^W$fm<& úNd.h - Smart Combined Maths®- Combined Mathamaics -Dilshan Mallawaarachchi G.C.E. (A/L) Examination
-
wOHhk fmdÿ iy;sl m;% ^Wiia fm<& úNd.h" 2023 wf.dai; a =
Genaral Certificate of Examination (Adv. Level) Examination, August 2023 03
ixhqla; .Ks;h I meh ;=khs
Combined Mathematics I 10 S I Three hours

▪ m%Yak ish,a,gu ms<s;=re imhkak'

11. (a) 𝑎, 𝑏, 𝑐 ;d;a;aúl ksh; fõ' 𝑎 > 0 iy 𝑏 2 − 4𝑎𝑐 < 0 úg ish¿ ;d;a;aúl 𝑥 w.hka
i`oyd 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 > 0 nj fmkajkak' 𝑥 2 + (𝑎 − 𝜆)𝑥 + (1 − 𝑎 − 𝜆) = 0 j¾.c
iólrKfha úfõplh ,shkak' 𝜆 ys ish¿ ;d;a;aúl w.h i`oyd fuu j¾.c
iólrKhg ;d;a;aúl m%Nskk a uQ, ;sfí kï 𝑎 g .;yels w.h mrdih fidhkak'
fuu iólrKfha uQ, folu Ok úh fkdyels nj fmkajkak'
(𝑏) 𝑓(𝑥) = 𝑎1 𝑥 4 + 𝑎2 𝑥 3 + 𝑎3 𝑥 2 + 𝑎4 𝑥 + 1 jk w;r 𝑎1 , 𝑎2 , 𝑎3 yd 𝑎4 ;d;aúl
ksh;hkah' 𝑓(𝑥) hkak (𝑥 2 − 4) ka yd (𝑥 2 − 1) ka fn¥úg fYaIhka ms<sfj,ska
45 − 12𝑥 yd 3(2 − 3𝑥) f,i § we;' 𝑓(𝑥) Y%s;h 𝑥 2 − 3𝑥 + 2 ka fn¥úg fYaIh
fidhkak'
(𝑐) 𝑓(𝑥) kue;s j¾.c nyqmohla ms<sfj<ska (2𝑥 + 1), (3𝑥 + 1) yd (4𝑥 + 1) ka fn¥úg
fYAIhka ms<sfj,ska 2,3 yd 4 fõ' tu j¾.c nyqmoh fkdfidhd
(2𝑥 + 1), (3𝑥 + 1) yd (4𝑥 + 1) hkq 𝑔(𝑥) = 𝑥𝑓(𝑥) + 1 u.ska fokq ,nk 𝑔(𝑥)
nyqmofha idOl nj fmkajkak' tkhska 𝑔(𝑥) nyqmoh ,shd olajkak'

12. (𝑎) mdi,a YsIHhka m%jdykh lrk È. 𝑙 jk jEka r:hla mdi,a YsIHdjka m%jdykh lrk
È. 2𝑙 jk nia r:hla fj; <`.dfõ' tajd tlu ud¾.hl tlu ÈYdjg p,kh fõ'
nia r:h taldldr 𝑣 m%fõ.fhka p,s; jk w;r jEka r:fha bÈß fl<jr nia r:h
fj; <`.djk fudfydf;a tys m%fõ.h 𝑢 (𝑢 > 𝑣) yd ;ajrKh 𝑎 fõ'jEka r:fhys
fõ.h 2𝑢 olajd jeäjk f;la th taldldrj ;ajrKh ù bkamiq nia r:h miq lrk
f;la tu taldldr fõ.fhka .uka lrhs' nia r:hg idfmalaIj jEka r:fhys p,s;hg
wod< m%fõ. ld, m%i:
a drh w`Èkak' tkhska jEka r:h nia r:h miq lrk f;lau nia
r:hg c, m%ydrhla je§fï wjOdkula mj;sk f,i i,ld YsIHdjka wk;=f¾ mj;sk
𝑢2 +6𝑎𝑙
ld, iSudj (2𝑢−𝑣)2𝑎
nj fmkajkak' 3𝑢2 = 𝑎𝑙 kï jEka r:h taldldr fõ.fhka p,s;
15𝑢+2𝑣)𝑙
jQ ld,h nj ;jÿrg;a fmkajkak'
𝑢(2𝑢−𝑣)6

DILSHAN MALLAWAARACHCHI
B.Sc.
5

(𝑏) 𝐴 yd 𝐵 hkq ;srig 300 l wdk;shla jQ iqug wdk; ;,hl Wmßu nEjqï f¾Ldj u;
tlsfklg 𝑎 ÿrlska msysá ,laIH folls' 𝐴 ,laIHg by<ska msysá 𝐵 ,laIHfha§ 𝑄
wxY=jla ksi,;djfhka 𝑓 taldldr ;ajrKhla iys;j my<g uqod yßkafka 𝐵 yuqjk
mßÈh' tu fudfydf;a§u 𝐴 ys § 𝑃 wxY=jla 𝑢 m%fõ.fhka ksoyfia ;,h Èf.a by<g
m%lafIamkh lrhs' 𝑃 yd 𝑄 f.a p,s;h i`oyd m%fõ. ld, m%i;
a drhla tlu rEm
igykl w`Èkak'

(𝑖) 𝑃 wxY=j ;u Wmßu úia:dmkh ,eîug fmr 𝑄 wxY=j yuqfõ kï


𝑔 𝑎𝑔
𝑓 ≥ 2 ( 𝑢2 − 1) nj fmkajkak'

𝑔 𝑎𝑔 𝑢
(𝑖𝑖) 𝑓 < 2 ( 𝑢2 − 1) kï 𝑃 f.a m%fõ.h jk úg 𝑄 yuqfõ kï
2

2𝑎𝑔 1
𝑓 = ( 3𝑢2 − 2) 𝑔 nj fmkajkak'

13' (𝑎) tal f¾Çh fkdjQ 𝐴, 𝐵 yd 𝐶 ,laI ;=kl 𝑂 uQ,hla wkqnoaOfhka msysgqï ffoYsl
ms<sfj,ska 𝑎, 𝑏 yd 𝑐 fõ' 𝐸 yd 𝐷 ,laI 𝐴𝐶 yd 𝐶𝐵 f¾Ld u; msysgd we;af;a ms<sfj,ska
1
⃗⃗⃗⃗⃗ = (−5𝑎 + 4𝑏 + 𝑐) nj fmkajd"
𝐴𝐸: 𝐸𝐶 = 2: 3 iy 𝐶𝐷: 𝐷𝐵 = 4: 1 jk mßÈh' 𝐴𝐷 5

⃗⃗⃗⃗⃗ fidhkak'
𝐵𝐸

𝐴𝐷 iy 𝐵𝐸 f¾Ld 𝑥 ys§ yuqfjhs' 𝑎 = (2𝑖 + 3𝑗) , 𝑏 = (3𝑖 − 𝑗) yd 𝑐 = (𝜆𝑖 − 7𝑗)


⃗⃗⃗⃗⃗ iy 𝐵𝐸
nj § we;' 𝜆 𝜖 ℤ fõ' 𝐴𝐷 ⃗⃗⃗⃗⃗ " 𝑖, 𝑗 weiqfrka fidhd 𝐴𝐷 ⊥ 𝐵𝐸 kï 𝜆 ys w.h
.Kkh lrkak'

(𝑏) 𝐴(−3,4), 𝐵(3, −1), 𝐶(2, −2) yd 𝐷(−1, −1) ,laI j,§ l%h
s dlrk

5𝑖 − 𝜆 𝑗 , 𝑖 − 4𝑗 , 𝜇𝑖 + 6𝑗 yd −9𝑖 + 𝑗 u`.ska n, moaO;shla ksrEmKh flf¾'

(𝑖) moaO;sh hq.auhlg W!kkh fjhs kï 𝜆 yd 𝜇 ys w.ho hq.aufha úYd,;ajho


fidhkak'
(𝑖𝑖) 𝜆 = 𝜇 = 3 kï yd m<uq n,h (−1,0) ,laIHhg úia:dmkh lf<a kï" kj n,
moaO;sh iu;=,s; nj fmkajkak'
(𝑖𝑖𝑖) 𝜆 = 𝜇 = 16 kï n, moaO;sh ;ks n,hlg W!kkh jk nj fmkajd" tys
úYd,;ajh ÈYdj yd l%h
s d f¾Ldj fidhkak'

DILSHAN MALLAWAARACHCHI
B.Sc.
6

𝑠𝑖𝑛4 𝜃 𝑐𝑜𝑠4 𝜃 1 𝑠𝑖𝑛8 𝜃 𝑐𝑜𝑠8 𝜃 1


14. (𝑎) + = 𝑎+𝑏 kï + = (𝑎+𝑏)3 nj fmkajkak'
𝑎 𝑏 𝑎3 𝑏3

1
(𝑏) iïu; wxlkhg wkqj 𝐴𝐵𝐶 ;%sfldaKhla i`oyd" ;%sfldaKfha j¾.M,h △= 2 𝑎𝑐 sin 𝐵

nj idOkh lrkak' 𝐴𝐵𝐶 ;%sfldaKfha 𝐶 fldaKfha wNHka;r fldaK iuÉfþolh 𝐴𝐵


mdoh 𝐷 ys§ yuqfõ' 𝐴𝐷 ∶ 𝐷𝐵 = 2 ∶ 3 fõ'

(𝑖) 2𝑏𝑐 sin 𝐴 + 3𝑎𝑐 sin 𝐵 = 5𝑎𝑏 sin 𝐶

(𝑖𝑖) sin 𝐴 = 3 sin 𝐵 nj fmkajkak'

1 1 1
(𝑐) 𝑡𝑎𝑛−1 (2𝑝+1)2 + 𝑡𝑎𝑛−1 (2𝑝+3) − 𝑡𝑎𝑛−1 (2𝑝+1) = 0 nj fmkajkak'

(𝑑) tl tflys nr 𝑤 ne.ska jQ 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐸 iy 𝐸𝐴 iudk taldldr o`vq myla ish
fl<jrj, § iqp, f,i ikaê fldg mxpdi%hl iajrEmh .;a iels,a,la idod we;'
fuys 𝐴 yd 𝐶𝐷 mdofha uOH ,laIH ieye,a¨ wú;kH ;ka;=jlska hd fldg ;sfí' 𝐶𝐷
oKav ;sria jk fiao 𝐴𝐵 iy 𝐵𝐶 o`vq ms<sfj,ska isrig 𝜃 yd ∅ fldaK j,ska wdk;
jk fiao " fuu iels,a, 𝐴 ,laIfhka t,a,d iu;=,s;j we;' 𝐵 ikaêfha m%;sl%h
s dfõ
isria yd ;sria ixrpl fidhkak'

tkhska " ;ka;=fõ wd;;sh fidhkak'

by; iels,af,a yevh fkdfjkiaj mj;ajd .ksñka " ;ka;=j bj;a lr 𝐵 yd 𝐸 ikaê
ieye,a¨ oKavlska hd lrk ,§'

(𝑖) 𝐶 ikaêfha m%;sl%h


s dfõ ;sria yd isria ixrpl fidhkak'

(𝑖𝑖) 𝐵𝐸 oKafâ m%;Hdn,h 𝑤(2 tan 𝜃 + tan ∅) nj fmkajkak' th wd;;shla o


f;rmqulao hkak i`oyka lrkak'

DILSHAN MALLAWAARACHCHI
B.Sc.

You might also like