ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .
Ks;h
Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics
ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h
Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics
wOHhk fmdÿ iy;sl m;% (Wiia fm<) úNd.h" 2021
General Certificate of Education (Adv. Level) Examination 2021
General Certificate of Education (Adv. Level) Examination 2021
13
Paper Class
ixhqla; .Ks;h ÿIHka; uynÿf.a 10 S
A fldgi ld,h meh 3 hs
m%Yak ish,a,gu ms<s;=re imhkak'
1. 2x – 1 = –
iólrKh x i|yd úi|kak'
2. wiudk;djh úi|kak'
3. A=[ ] úg ish¿ Ok ksÅ,uh n i|yd" An = [ ] nj .Ks; wNHqykfhka
fmkajkak'
4. 3232, 3 ka fnÿ úg fYaIh fidhkak.
5. y = sin–1 2x, x úIhfhka wjl,kh lrkak.
𝑑𝑥
6. fidhkak.
𝑥2 + 𝑥2 +2 𝑥2 +
7. uQ, ,laIHfha isg x2 + y2 – 6x – 6y + 9 = 0 jD;a;hg we|s iam¾Yl foflys iólrK
fidhkak.
8. ABC ;%sfldaKfha, A (2, – 3), B (– 2, 1) jk w;r tys flakaølh 2x + 3y = 1 ir,
f¾Ldj u; fõ. C ,laIHfha m:h fidhkak.
9. y2 = 4x mrdj,h u; jQ ,laIHhl § thg w|sk ,o iam¾Ylh (5, – 6) ,laIHh yryd
hhs. iaam¾Y ,laIHh fidhkak.
10. ;%sfldaKhl mdo w;r wkqmd;h 1 : √ : 2 fõ' tu ;%sfldaKfha fldaK w;r wkqmd;h
ms<sfj,ska 1 : 2 : 3 nj fmkajkak.
Paper Class Dushyantha Mahabaduge Page | 1
B fldgi
01. (a) a1x2 + 2b1x + c1 = 0 iy a2x2 + 2b2x + c2 = 0 j¾.c iólrKj,g fmdÿ
uQ,hla ;sfí.
[ b12 – a1c1 ] x2 + [ 2b1b2 – a1c2 – a2c1 ] x + [ b22 – a2c2 ] = 0 j¾.c
iólrKhg iudk uQ, mj;sk nj fmkajkak' (a1 yd a2 ksYaY=kH ;d;a;aúl
ixLHd fõ. j¾.c iólrK neúka a1 0" a2 0)
(b) f(x) hkq x ys y;r jk n,fha nyqmohls' f(0) = 12 fõ' x – 2 hkq f(x) ys
fojrla mqkrdj¾:k jk idOlhls' f(x) hkak x2 + 1 ka fn¥ úg fYaIh 6 –
8x fõ' f(x) ks¾Kh lrkak'
(c) (i) ys Nskak Nd. fidhkak'
(c) (ii) tkhska" | | ys Nskak Nd. wfmdaykh lrkak'
02. (a) f(x) = x + | x | – 2x | x | + 3 fõ' f(x) 11 ys úi÷u fidhkak'
(b) [ ]+[ ]+[ ] ab + bc + ac nj fmkajkak'
fuys a, b, c hkq Ok ;d;a;aúl ixLHd fõ'
(c) = nj idOkh lrkak'
fuys a yd b hkq 1 g wiudk Ok ;d;a;aúl ixLHd fõ'
+ + = 2 nj wfmdaykh lrkak'
fuys x yd y hkq 1 g jeä ;d;a;aúl ixLHd fõ'
(d) Un = 2 cos n fõ' fuys n hkq Ok ksÅ,hls' Un + 1 = U1Un – Un – 1 nj
fmkajkak'
U7 = –7 + 14 – 7U1 nj o fmkajkak'
Paper Class Dushyantha Mahabaduge Page | 2
03. (a) ish¿ Ok ksÅ,uh n i|yd" + + – hkq ksÅ,hla nj .Ks;
wNHqykh u.ska idOkh lrkak'
(b) (i) n hkq Ok ksÅ,hla úg" 3 + 33 + 333 + 3333 + ……… ys uq,a mo n ys
ftlHh (10n – 1) – nj fmkajkak'
(ii) + + + …… n ys wdrïNl mo n ys tl;=j fidhkak'
(c) (i) Z= + yd Re(z) = Im(z) fõ' fidhkak'
(ii) Z1 = 2 + i, Z2 = – 2 + 4i fõ' = + jk úg Z j, w.h a + ib
wdldrfhka m%ldY lr tys udmdxlh yd úia;drh fidhkak'
(d) (i) = a + ib fõ' a2 + b2 = 4a – 3 nj fmkajkak'
(ii) [ ] hkq ;d;a;aúl ixLHdjla nj fmkajkak'
(e) | Z – 1 | = 2 | Z + 1 | iólrKh ;Dma; lrk Z ksrEmKh lrk ,CIHhkays
m:h jD;a;hla nj fmkajkak' tys wrh yd flakaøh fidhkak'
04. (a) iSudj w.hkak'
[ ]
(i)
(ii) [ ]
[ ]
(iii)
Paper Class Dushyantha Mahabaduge Page | 3
(b) y = o" y(r) hk o fõ kï" [1 + x2] y(3) + 6xy(2) + 6y(1) = ex nj
fmkajkak'
.Ks; wNHqykfhka fyda wka l%uhlska fyda r 3 i|yd
(1 + x2) y(r) + 2rxy(r – 1) + r ( r – 1)y(r – 2) = ex nj idOkh lrkak'
(c) y= m%ia;drfha o< igykla w|skak'
𝑑𝑥
05. (a) t = tan wdfoaYh Ndú;fhka = nj fmkajkak'
+ s n𝑥
2 sin x = (1 + sin x) + jk mßÈ , ksh;hka fidhkak'
c s𝑥 + 2s n𝑥
tkhska" dx w.hkak'
+ s n𝑥
𝑥𝑛
(b) ish¿ Ok ksÅ,uh n i|yd 𝑥 𝑛 𝑑𝑥 = + C [ C – ksh;hla ] nj
𝑛+
.Ks;
wNHqykh u.ska idOkh lrkak' fuys C hkq wNsu; ksh;hls'
(c) = + fõ'
tkhska" = + + + nj fmkajkak'
by; m%;sM,h Ndú;fhka Nskak Nd.j,g fjka lrkak'
tuÕska" w.hkak'
Paper Class Dushyantha Mahabaduge Page | 4
06. (a) OA, OB ir, f¾Ldj, iólrK ms<sfj<ska x + 2y = 0 yd x – 2y = 0 fjhs'
P (, ) ,CIHh Tiafia OA g iudka;rj w|sk ,o f¾Ldjla M ys§ OB g
yuqfjhs' P isg OB g iudka;rj w|sk ,o ;j;a f¾Ldjla L ys§ OA g
yuqfjhs' L yd M yryd ms<sfj<ska OA g yd OB g ,ïNlj w|ska ,o f¾Ld Q
ys§ fþokh fõ' Q ys LKavdxl [ ] nj Tmamq lrkak'
P j,ska i,l=Kq flfrkafka x wCIhg 45 lska wdk; ir, f¾Ldjls' Q
j,ska o ir, f¾Ldjla i,l=Kq flfrk nj;a fuu f¾Ldj x wCIhg tan-1 4
lska wdk; nj;a fmkajkak'
(b) 2x – 3y + 26 = 0 f¾Ldj x2 + y2 – 4x + 6y – 104 = 0 jD;a;hg iam¾Ylhla nj
fmkajkak' iam¾Yl ,CIHh Tiafia we;s úYalïNfha iólrKh fidhkak'
07. (a) cos m%fïhh m%ldY lrkak'
iqmqreÿ wxlkfhka ABC ;s%fldaKhla i|yd + + = +
fõ' ABC hkq RcqfldaŒ ;s%fldaKla nj idOkh lrkak'
(b) + = 1 fõ' + = 1 nj fmkajkak'
(c) tan-1 [ ] + tan-1 [ ] + tan-1 [ ]= fõ' 2 = a2 + b2 + c2 nj fmkajkak'
ÿIHka; uynÿf.a
Paper Class Dushyantha Mahabaduge Page | 5