0% found this document useful (0 votes)
100 views5 pages

Maths Paper 13

The document appears to be an examination paper for the General Certificate of Education (Advanced Level) in Combined Mathematics for the year 2021. It includes various mathematical problems and exercises covering topics such as equations, functions, geometry, and calculus. The paper is structured into multiple sections with specific questions for students to solve.

Uploaded by

dilsarakkpd79
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
100 views5 pages

Maths Paper 13

The document appears to be an examination paper for the General Certificate of Education (Advanced Level) in Combined Mathematics for the year 2021. It includes various mathematical problems and exercises covering topics such as equations, functions, geometry, and calculus. The paper is structured into multiple sections with specific questions for students to solve.

Uploaded by

dilsarakkpd79
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .

Ks;h
Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics
ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h ixhqla; .Ks;h
Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics Combined Mathematics

wOHhk fmdÿ iy;sl m;% (Wiia fm<) úNd.h" 2021


General Certificate of Education (Adv. Level) Examination 2021
General Certificate of Education (Adv. Level) Examination 2021
13
Paper Class
ixhqla; .Ks;h ÿIHka; uynÿf.a 10 S

A fldgi ld,h meh 3 hs

m%Yak ish,a,gu ms<s;=re imhkak'

1. 2x – 1 = –
iólrKh x i|yd úi|kak'

2.  wiudk;djh úi|kak'

3. A=[ ] úg ish¿ Ok ksÅ,uh n i|yd" An = [ ] nj .Ks; wNHqykfhka

fmkajkak'

4. 3232, 3 ka fnÿ úg fYaIh fidhkak.

5. y = sin–1 2x, x úIhfhka wjl,kh lrkak.

𝑑𝑥
6. fidhkak.
𝑥2 + 𝑥2 +2 𝑥2 +

7. uQ, ,laIHfha isg x2 + y2 – 6x – 6y + 9 = 0 jD;a;hg we|s iam¾Yl foflys iólrK


fidhkak.

8. ABC ;%sfldaKfha, A (2, – 3), B (– 2, 1) jk w;r tys flakaølh 2x + 3y = 1 ir,


f¾Ldj u; fõ. C ,laIHfha m:h fidhkak.

9. y2 = 4x mrdj,h u; jQ ,laIHhl § thg w|sk ,o iam¾Ylh (5, – 6) ,laIHh yryd


hhs. iaam¾Y ,laIHh fidhkak.

10. ;%sfldaKhl mdo w;r wkqmd;h 1 : √ : 2 fõ' tu ;%sfldaKfha fldaK w;r wkqmd;h
ms<sfj,ska 1 : 2 : 3 nj fmkajkak.
Paper Class Dushyantha Mahabaduge Page | 1
B fldgi

01. (a) a1x2 + 2b1x + c1 = 0 iy a2x2 + 2b2x + c2 = 0 j¾.c iólrKj,g fmdÿ


uQ,hla ;sfí.
[ b12 – a1c1 ] x2 + [ 2b1b2 – a1c2 – a2c1 ] x + [ b22 – a2c2 ] = 0 j¾.c
iólrKhg iudk uQ, mj;sk nj fmkajkak' (a1 yd a2 ksYaY=kH ;d;a;aúl
ixLHd fõ. j¾.c iólrK neúka a1  0" a2  0)

(b) f(x) hkq x ys y;r jk n,fha nyqmohls' f(0) = 12 fõ' x – 2 hkq f(x) ys
fojrla mqkrdj¾:k jk idOlhls' f(x) hkak x2 + 1 ka fn¥ úg fYaIh 6 –
8x fõ' f(x) ks¾Kh lrkak'

(c) (i) ys Nskak Nd. fidhkak'

(c) (ii) tkhska" | | ys Nskak Nd. wfmdaykh lrkak'

02. (a) f(x) = x + | x | – 2x | x | + 3 fõ' f(x)  11 ys úi÷u fidhkak'

(b) [ ]+[ ]+[ ]  ab + bc + ac nj fmkajkak'

fuys a, b, c hkq Ok ;d;a;aúl ixLHd fõ'

(c) = nj idOkh lrkak'

fuys a yd b hkq 1 g wiudk Ok ;d;a;aúl ixLHd fõ'

+ + = 2 nj wfmdaykh lrkak'

fuys x yd y hkq 1 g jeä ;d;a;aúl ixLHd fõ'

(d) Un = 2 cos n fõ' fuys n hkq Ok ksÅ,hls' Un + 1 = U1Un – Un – 1 nj


fmkajkak'

U7 = –7 + 14 – 7U1 nj o fmkajkak'

Paper Class Dushyantha Mahabaduge Page | 2


03. (a) ish¿ Ok ksÅ,uh n i|yd" + + – hkq ksÅ,hla nj .Ks;

wNHqykh u.ska idOkh lrkak'

(b) (i) n hkq Ok ksÅ,hla úg" 3 + 33 + 333 + 3333 + ……… ys uq,a mo n ys


ftlHh (10n – 1) – nj fmkajkak'

(ii) + + + …… n ys wdrïNl mo n ys tl;=j fidhkak'

(c) (i) Z= + yd Re(z) = Im(z) fõ'  fidhkak'

(ii) Z1 = 2 + i, Z2 = – 2 + 4i fõ' = + jk úg Z j, w.h a + ib

wdldrfhka m%ldY lr tys udmdxlh yd úia;drh fidhkak'

(d) (i) = a + ib fõ' a2 + b2 = 4a – 3 nj fmkajkak'

(ii) [ ] hkq ;d;a;aúl ixLHdjla nj fmkajkak'

(e) | Z – 1 | = 2 | Z + 1 | iólrKh ;Dma; lrk Z ksrEmKh lrk ,CIHhkays


m:h jD;a;hla nj fmkajkak' tys wrh yd flakaøh fidhkak'

04. (a) iSudj w.hkak'

[ ]
(i)

(ii) [ ]

[ ]
(iii)

Paper Class Dushyantha Mahabaduge Page | 3


(b) y = o" y(r) hk o fõ kï" [1 + x2] y(3) + 6xy(2) + 6y(1) = ex nj
fmkajkak'

.Ks; wNHqykfhka fyda wka l%uhlska fyda r  3 i|yd


(1 + x2) y(r) + 2rxy(r – 1) + r ( r – 1)y(r – 2) = ex nj idOkh lrkak'

(c) y= m%ia;drfha o< igykla w|skak'

𝑑𝑥
05. (a) t = tan wdfoaYh Ndú;fhka = nj fmkajkak'
+ s n𝑥

2 sin x =  (1 + sin x) +  jk mßÈ ,  ksh;hka fidhkak'

c s𝑥 + 2s n𝑥
tkhska" dx w.hkak'
+ s n𝑥

𝑥𝑛
(b) ish¿ Ok ksÅ,uh n i|yd 𝑥 𝑛 𝑑𝑥 = + C [ C – ksh;hla ] nj
𝑛+
.Ks;

wNHqykh u.ska idOkh lrkak' fuys C hkq wNsu; ksh;hls'

(c) = + fõ'

tkhska" = + + + nj fmkajkak'

by; m%;sM,h Ndú;fhka Nskak Nd.j,g fjka lrkak'

tuÕska" w.hkak'

Paper Class Dushyantha Mahabaduge Page | 4


06. (a) OA, OB ir, f¾Ldj, iólrK ms<sfj<ska x + 2y = 0 yd x – 2y = 0 fjhs'
P (, ) ,CIHh Tiafia OA g iudka;rj w|sk ,o f¾Ldjla M ys§ OB g
yuqfjhs' P isg OB g iudka;rj w|sk ,o ;j;a f¾Ldjla L ys§ OA g
yuqfjhs' L yd M yryd ms<sfj<ska OA g yd OB g ,ïNlj w|ska ,o f¾Ld Q

ys§ fþokh fõ' Q ys LKavdxl [   ] nj Tmamq lrkak'

P j,ska i,l=Kq flfrkafka x wCIhg 45 lska wdk; ir, f¾Ldjls' Q


j,ska o ir, f¾Ldjla i,l=Kq flfrk nj;a fuu f¾Ldj x wCIhg tan-1 4
lska wdk; nj;a fmkajkak'

(b) 2x – 3y + 26 = 0 f¾Ldj x2 + y2 – 4x + 6y – 104 = 0 jD;a;hg iam¾Ylhla nj


fmkajkak' iam¾Yl ,CIHh Tiafia we;s úYalïNfha iólrKh fidhkak'

07. (a) cos m%fïhh m%ldY lrkak'

iqmqreÿ wxlkfhka ABC ;s%fldaKhla i|yd + + = +

fõ' ABC hkq RcqfldaŒ ;s%fldaKla nj idOkh lrkak'

(b) + = 1 fõ' + = 1 nj fmkajkak'

(c) tan-1 [ ] + tan-1 [ ] + tan-1 [ ]= fõ'  2 = a2 + b2 + c2 nj fmkajkak'

ÿIHka; uynÿf.a

Paper Class Dushyantha Mahabaduge Page | 5

You might also like