0% found this document useful (0 votes)
24 views48 pages

2.8 MOSFETs

Uploaded by

katiekill1123
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views48 pages

2.8 MOSFETs

Uploaded by

katiekill1123
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 48

EEL 3008

Physics of EE
2.8 MOSFETs

EEL 3008 Physics of EE 1


Outline
• Function/purpose of a transistor
• Metal-oxide-semiconductor
(MOS) gate
– structure and operation
• MOS field-effect-transistor
(MOSFET)
– modes of operation
– I-V equations

EEL 3008 Physics of EE 2


Need for Electronic Switch
• Consider mechanical switch
– Mechanical valve Control

Input Output

– Electromechanical switch
Control

Input Output

– How many terminals?

EEL 3008 Physics of EE 3


Solid-State Switch
• Need a variable resistor that can be controlled electrically

Control Gate

Source Drain
Rswitch
• How?
• Hint: Recall conductivity of semiconductor can be changed by orders
of magnitude

EEL 3008 Physics of EE 4


Key Idea and Structure
• Key Idea:
– Field-effect conductivity modulation, i.e. “Field Effect Transistor” (FET)
• Key Structure:
– Metal-Oxide-Semiconductor (MOS) structure
High-resolution transmission
electron microscope image
Metal
Oxide (Insulator)

Poly-Crystalline
+
4
+
4
+
3
+
4
+
4
Si Gate Electrode

+ + + + + Amorphous
3 4 4 3 4
SiO2 Dielectric
+ + + + +
4 3 4 4 3

P-type Semiconductor
Crystalline
Si Channel
Ref: Jaeger, Intro to Microelectronic Fabrication, p.39.

EEL 3008 Physics of EE 5


Systematic Development of
Enhancement Mode N-channel MOSFET
• Begin with “MOS control gate structure” built on on P-type
semiconductor substrate

• Let’s first look at the MOS control gate structure (“valve”)

EEL 3008 Physics of EE 6


Equilibrium VGate=0
Uniform distribution of
majority holes and Metal
minority electrons.
Oxide (Insulator)

+ + + + +
4 4 3 4 4

P-type
(P>N) + + + + +
3 4 4 3 4

+ + + + +
4 3 4 4 3 Many more
atoms than
P-type Semiconductor shown

EEL 3008 Physics of EE 7


Depletion IGate=?
VGate>0
Depletion of most majority
holes near oxide by Metal
positive gate voltage !"
(field). Oxide (Insulator) E transverse

+ + + + +
4 4 3 4 4 Wd
?-type Depletion
(few layer
carriers) + + + + +
3 4 4 3 4

P-type + + + + +
4 3 4 4 3

P-type Semiconductor

EEL 3008 Physics of EE 8


Inversion IGate=0
VGate>VThreshold
Not many electrons, BUT
they all collect at
oxide/silicon interface,
Metal !" N-type
‘inversion’ layer
Oxide (Insulator)
creating inversion of
dopant type.
E transverse
+ + + + +
4 4 3 4 4 Wd
N-type Depletion
layer
+ + + + +
3 4 4 3 4

+ + + + +
P-type 4 3 4 4 3

P-type Semiconductor

EEL 3008 Physics of EE 9


Voltage-Controlled Resistance
• The MOS structure acts as a voltage-controlled resistance (“gate”)
– can change the silicon under the gate from p-type, to neutral, to highly
doped n-type (completely reversible)

• Next, we make a MOS Field-Effect Transistor


– Need to add two more features: a “source” terminal and a “drain”
terminal

EEL 3008 Physics of EE 10


VGate

VSource Metal VDrain


Oxide
N-channel

N+ Source N+ Drain
+ + + + +
P-type 4 4 3 4 4

+ + + + +
3 4 4 3 4

+ + + + +
P-type 4 3 4 4 3

P-type Semiconductor

VBody
EEL 3008 Physics of EE 11
VGate
3D Structure
VSource Metal VDrain
IDrain
Oxide Cox tox
N-channel
Carrier mobility, µ
N+ Source
+
N+ Drain
+
W
4 L 4

P-type Semiconductor

VBody
EEL 3008 Physics of EE 12
MOSFET Conventions
• We now have 4 terminals in our MOSFET
• Connect some voltages and see how it works

For N-channel
Gate

Source Drain
(of electrons) (of electrons)

Body

EEL 3008 Physics of EE 13


MOSFET Conventions
• By convention, ground the Source and Body terminals
• Note: Electrons flow from Source to Drain è current flows from Drain to Source
(seemingly backwards notation if you’re not careful)…
For N-channel VDS
_-+ +
VGS
_-+ + Gate

ID
Source Drain
(of electrons) (of electrons)

Body

EEL 3008 Physics of EE 14


Voltage Naming Convention
• Node voltages labeled with single-letter subscript, e.g. VG; these potentials are
always with respect to ground.
• Differential voltages labeled with double-letter subscript, e.g. VGS = VG - VS

VDS = 3V
Example: _-+ + VS =
VGS = 5V VB =
_-+ + VG VG =
ID VD =
VS VD
VGD =
VDG =
VB VSB =

EEL 3008 Physics of EE 15


VGate<VThreshold
Cut-off
No conducting n-type
inversion layer AND back- VSource Metal VDrain>0
to-back P|N diodes so !"
IDrain=0 Oxide E transverse IDrain=0
N-channel

N+ Source N+ Drain
+ + + + +
P-type 4 4 3 4 4

+ + + + +
3 4 4 3 4

+ + + + +
P-type 4 3 4 4 3

P-type Semiconductor

VBody
EEL 3008 Physics of EE 16
VGate>VThreshold
Triode
Conducting layer and
small drain voltage result
VSource Metal !" VDrain>0 (small)
in ID that varies with VDS Oxide
E transverse IDrain>0
!"
N-channel

N+ Source E longitudinal N+ Drain


+ + + + +
N-type 4 4 3 4 4 Wd
Depletion
layer
+ + + + +
3 4 4 3 4

+ + + + +
P-type 4 3 4 4 3

P-type Semiconductor

VBody
EEL 3008 Physics of EE 17
VGate>VThreshold
Saturation
Conducting layer and large
drain voltage causes ID to VSource Metal !" VDrain>>0 (large)
saturate because
conducting channel is Oxide
E transverse IDrain=IDsat
‘pinched’ near drain.
N-channel

N+ Source
!" N+ Drain
+ + E longitudinal
+ + +
N-type 4 4 3 4 4 Wd
Depletion
layer
+ + + + +
3 4 4 3 4

+ + + + +
P-type 4 3 4 4 3

P-type Semiconductor

VBody
EEL 3008 Physics of EE 18
MOSFET I-V Equations
• One current, ID, that depends on voltages, VGS and VDS.
• Is there really only one current ID?

For N-channel VDS


_-+ +
VGS
_-+ + Gate

ID
Source Drain
(of electrons) (of electrons)

Body

EEL 3008 Physics of EE 19


N-channel MOSFET I-V Equations



⎪ 0 for VGS ≤ VT Cutoff
⎪ ⎡ 1 2⎤
ID = ⎨ k ⎢(VGS −VT ) VDS − VDS ⎥⎦ for VDS ≤ VGS −VT Triode
⎪ ⎣ 2
⎪ 1

2
k (VGS −VT ) = I Dsat for VDS ≥ VGS −VT Saturation
⎩ 2

• Simplest form is derived from the two-dimensional energy band


model split into two one-dimensional problems using the
transverse and longitudinal electric fields.

EEL 3008 Physics of EE 20


MOSFET I-V Equation Parameters
VGate

VSource VDrain
⎡ 1 2⎤ Metal
Oxide Cox tox
IDrain
I D = k ⎢(VGS −VT ) VDS − VDS ⎥ for VDS ≤ VGS −VT Carrier mobility, µ
⎣ 2 ⎦ N+ Source
+4 L
N+ Drain
+4 W

W P-type Semiconductor

k = k' = "transconductance parameter" [mA/V 2 ]


L VBody
depends on geometry which circuit designer selects

k ' = µ nCox = "process transconductance parameter" [mA/V 2 ]


and depends on fabrication/manufacturing process

εrε 0 ⎡ F ⎤
carrier mobility Cox = ⎢⎣ 2 ⎥⎦
tox cm

EEL 3008 Physics of EE 21


Channel Resistance
• For any given mode, we can define channel resistance, RDS:

VDS
RDS =
ID
Triode VGate>VThreshold

Control Gate VSource Metal !" VDrain>0 (small)


Oxide
E transverse IDrain>0
!"
N+ Source E longitudinal N+ Drain
+4 +4 +3 +4 +4
N-type
Source Drain
Rswitch +3 +4 +4 +3 +4

P-type +4 +3 +4 +4 +3

Body
P-type Semiconductor

VBody

EEL 3008 Physics of EE 22


N-channel MOSFET I-V Curves
Assumptions for next few slides:
VT = 1 V 25
I D-VDS Characteristics of a n-channel MOSFET

k’ = 1 mA/V2 VT = 1 V VGS = 5 V
W = 3 um, L = 1 um 20 k’=1 mA/V2
W=3um, L=1um
Plot I D vs. VDS 15 VGS = 4 V
Triode Region

I D / [mA]
for different VGS
10 Satura&on Region
VGS = 3 V
5

VGS = 2 V
0
Cutoff
0 1 2 3 4 5
V DS /[V]

EEL 3008 Physics of EE 23


Cut-off Mode n-channel MOSFET
I D-VDS Characteristics of a n-channel MOSFET
• VGS < VT 25
VT = 1 V
• ID = 0 for any VD k’=1 mA/V2
20
• Why? W=3um, L=1um
15

I D / [mA]
VGS = 0 < VT = 1 V
10

5
ID = 0 for any VDS
0
0 1 2 3 4 5
V DS /[V]

EEL 3008 Physics of EE 24


Triode Mode n-channel MOSFET
I D-VDS Characteristics of a n-channel MOSFET
• VGS > VT 25
VT = 1 V
• VDS ≤ VGS – VT k’=1 mA/V2
20
W=3um, L=1um
15

I D / [mA]
VGS
VGS= 2= 2> >VTV=T 1= V
1V
10
⎡ 1 2⎤
(
⎣ 2
)
I D = k ⎢ VGS −VT VDS − VDS ⎥

5

0
0 1 2 3 4 5
V DS /[V]

EEL 3008 Physics of EE 25


Saturation Mode n-channel MOSFET
I D-VDS Characteristics of a n-channel MOSFET
• VGS > VT 25

VT = 1 V
• ID = IDsat for k’=1 mA/V2
20
VDS ≥ VGS – VT W=3um, L=1um
15
VGS = 2 > VT = 1 V
I D / [mA]
10

1 2

5
I D = I Dsat = k VGS −VT
2
( )
ID = IDsat
0
0 1 2 3 4 5
V DS /[V]

EEL 3008 Physics of EE 26


N-channel MOSFET ID vs. VDS
I D-VDS Characteristics of a n-channel MOSFET
25
VT = 1 V
ID – VDS k’=1 mA/V2 VGS = 5 V
20

Family of W=3um, L=1um


curves for 15 VGS = 4 V
I D / [mA]
different
values of VGS 10

VGS = 3 V
5

VGS = 2 V
0
0 1 2 3 4 5
V DS /[V]

EEL 3008 Physics of EE 27


N-channel MOSFET ID vs. VDS
I D-VDS Characteristics of a n-channel MOSFET
• Three different regions 25

VT = 1 V VGS = 5 V
of operation
20 k’=1 mA/V2
W=3um, L=1um
• Increasing IDSat and 15 VGS = 4 V
Triode Region
VDSat for increasing VGS

I D / [mA]
10 Saturation Region
VGS = 3 V
5

VGS = 2 V
0
Cutoff
0 1 2 3 4 5
V DS /[V]

EEL 3008 Physics of EE 28


Systematic Development of
Enhancement Mode P-channel MOSFET
• Begin with MOS control gate structure on N-type semiconductor
substrate

• Similarities/Differences to N-channel MOSFET


– Same:
• Field-effect conductivity modulation
– Difference:
• Opposite polarity for charge carrier (holes instead of electrons)
• Everything is “mirror image”
• Be careful with polarity and voltage!

EEL 3008 Physics of EE 29


VGate=0
Equilibrium
Uniform distribution of
majority electrons and Metal
minority holes.
Oxide (Insulator)

+ + + + +
4 4 5 4 4

N-type
+ + + + +
(N>P) 5 5
4 4 4

+ + + + +
4 5 4 4 5 Many more
atoms than
N-type Semiconductor shown

EEL 3008 Physics of EE 30


Depletion Vgate<0
Depletion of most majority
electrons near oxide by Metal
negative gate voltage !"
(field). Oxide (Insulator) E transverse

+ + + + +
4 4 5 4 4 Wd
?-type Depletion
(few carriers) layer
+ + + + +
5 4 4 5 4

+ + + + +
N-type 4 5 4 4 5

N-type Semiconductor

EEL 3008 Physics of EE 31


Inversion Vgate<VThreshold
Not many holes, BUT they **VThreshold is negative value |Vgate| > |VThreshold|
all collect at oxide/silicon
interface, creating
Metal !" P-type
‘inversion’ layer
Oxide (Insulator)
inversion of dopant type.
E transverse
+ + + + +
4 4 5 4 4 Wd
P-type Depletion
layer
+ + + + +
5 4 4 5 4

+ + + + +
N-type 4 5 4 4 5

N-type Semiconductor

EEL 3008 Physics of EE 32


Voltage-Controlled Resistance
• The MOS structure acts as a voltage-controlled resistance (“gate”)
– can change the silicon under the gate from n-type, to neutral, to highly
doped p-type (completely reversible)

• Next, we make a MOS Field-Effect Transistor


– Need to add two more features: a “source” terminal and a “drain”
terminal

EEL 3008 Physics of EE 33


VGate

VSource Metal VDrain


Oxide

P+ Source P+ Drain
P-channel

+ + + + +
N-type 4 4 5 4 4

+ + + + +
5 4 4 5 4

+ + + + +
N-type 4 5 4 4 5

N-type Semiconductor

EEL 3008 Physics of EE 34


VGate
3D Structure
VSource Metal VDrain
IDrain
Oxide Cox tox
P-channel
Carrier mobility, µ
P+ Source P+ Drain
+
L
+ W
4 4

Note: Opposite direction for positive drain current


compared to n-channel MOSFET

N-type Semiconductor

VBody
EEL 3008 Physics of EE 35
MOSFET Conventions
• We now have 4 terminals in our MOSFET
• Connect some voltages and see how it works

For P-channel
Gate

Source Drain
(of holes) (of holes)

Body

EEL 3008 Physics of EE 36


MOSFET Conventions
• By convention, ground the Source and Body terminals.
• Note: ID is defined in opposite direction as compared to the N-channel case

For P-channel VDS Both voltages will be


_-+ + negative values
VGS
_-+ + Gate

ID
Source Drain
(of holes) (of holes)

Body

EEL 3008 Physics of EE 37


Vgate>VThreshold
Cut-off
No conducting p-type
inversion layer AND back- VSource Metal VDrain<0
to-back P|N diodes so
!"
IDrain=0
Oxide E transverse IDrain=0

P+ Source P+ Drain
P-channel

+ + + + +
N-type 4 4 5 4 4

+ + + + +
5 4 4 5 4

+ + + + +
N-type 4 5 4 4 5

N-type Semiconductor

EEL 3008 Physics of EE 38


Vgate<VThreshold
Triode
Conducting layer and
small drain voltage result
VSource Metal !" Vdrain<0 (small)
in ID that varies with VDS
Oxide
E transverse IDrain>0
!"
P+ Source E longitudinal P+ Drain
P-channel

+ + + + +
4 4 5 4 4 Wd
P-type
Depletion
layer
+ + + + +
5 4 4 5 4

+ + + + +
N-type 4 5 4 4 5

N-type Semiconductor

EEL 3008 Physics of EE 39


Vgate<VThreshold
Saturation
Conducting layer and large
drain voltage causes ID to VSource Metal !" Vdrain<<0 (large)
saturate because
Oxide IDrain=IDsat
conducting channel is
‘pinched’ near drain.
E transverse
!"
P+ Source P+ Drain
P-channel

+ + E longitudinal
+ + +
4 4 5 4 4 Wd
P-type
Depletion
layer
+ + + + +
5 4 4 5 4

+ + + + +
N-type 4 5 4 4 5

N-type Semiconductor

EEL 3008 Physics of EE 40


P-channel MOSFET I-V Equations
• Note: Same equations for p-channel and n-channel MOSFETs
• But different equalities since carriers are positive holes instead of
negative electrons



⎪ 0 for VGS ≥ VT Cutoff
⎪ ⎡ 1 2⎤
ID = ⎨ k ⎢(VGS −VT ) VDS − VDS ⎥⎦ for VDS ≥ VGS −VT Triode
⎪ ⎣ 2
⎪ 1

2
k (VGS −VT ) = I Dsat for VDS ≤ VGS −VT Saturation
⎩ 2

EEL 3008 Physics of EE 41


P-channel MOSFET I-V Curves
Assumptions for next few slides:
VT = -1 V 25
I D-VDS Characteristics of a p-channel MOSFET

k’ = 1 mA/V2 VGS = -5 V VT = -1 V
k’=1 mA/V2
W = 3 um, L = 1 um 20
W=3um, L=1um
Plot I D vs. VDS 15 VGS = -4 V Triode Region

I D / [mA]
for different VGS 10 Satura&on Region
VGS = -3 V
5

VGS = -2 V
0
Cutoff
-5 -4 -3 -2 -1 0
V DS /[V]

EEL 3008 Physics of EE 42


Cut-off Mode p-channel MOSFET
I D-VDS Characteristics of a p-channel MOSFET
25 • VGS > VT
• ID = 0 for any VD
20

15
VGS = 0 > VT = -1 V
I D / [mA]

10

5
ID = 0 for any VDS
0
-5 -4 -3 -2 -1 0
V DS /[V]

EEL 3008 Physics of EE 43


Triode Mode p-channel MOSFET
I D-VDS Characteristics of a p-channel MOSFET
25
• VGS < VT
VT = -1 V
• VDS ≥ VGS – VT
20 k’=1 mA/V2
W=3um, L=1um
15
I D / [mA]

VGS = -2 > VT = -1 V Equivalently


10

⎡ 1 2⎤ VDS ≤ VGS −VT


5 ⎣
( 2
)
I D = k ⎢ VGS −VT VDS − VDS ⎥

0
-5 -4 -3 -2 -1 0
V DS /[V]

EEL 3008 Physics of EE 44


Saturation Mode p-channel MOSFET
I D-VDS Characteristics of a p-channel MOSFET
25
• VGS < VT
VT = -1 V
k’=1 mA/V2 • ID = IDsat for
VDS ≤ VGS - VT
20
W=3um, L=1um
15
VGS = -2 < VT = -1 V
I D / [mA]

10
Equivalently
1 2 VDS ≥ VGS − VT
5
I D = I Dsat (
= k VGS −VT
2
)
ID = IDsat
0
-5 -4 -3 -2 -1 0
V DS /[V]

EEL 3008 Physics of EE 45


P-channel MOSFET ID vs. VDS
I D-VDS Characteristics of a p-channel MOSFET
25
VT = -1 V
VGS = -5 V k’=1 mA/V2
ID – VDS
20
W=3um, L=1um
15 VGS = -4 V
Family of
curves for
I D / [mA]

10 different
VGS = -3 V values of VGS
5

VGS = -2 V
0
-5 -4 -3 -2 -1 0
V DS /[V]

EEL 3008 Physics of EE 46


P-channel MOSFET ID vs. VDS
I D-VDS Characteristics of a p-channel MOSFET
• Three different 25
VT = -1 V
regions of operation VGS = -5 V
20
k’=1 mA/V2
W=3um, L=1um
• Increasing IDSat and
15 VGS = -4 V Triode Region
|VDSat| for increasing

I D / [mA]
|VGS|
10 Saturation Region
VGS = -3 V
5

VGS = -2 V
0
Cutoff
-5 -4 -3 -2 -1 0
V DS /[V]

EEL 3008 Physics of EE 47


Takeaways
• MOS gate
– Structure and operation:
equilibrium, depletion, inversion
• MOSFET
– Modes of operation: cutoff, triode,
saturation
– I-V relationship depends on mode
– The effective resistance of the
conduction path is the channel
resistance

EEL 3008 Physics of EE 48

You might also like