https://www.ncertbooks.
guru/
1.1.3 Derivatives of some standard Composite Functions :
dy dy
y y
dx dx
[ f (x)] n n [ f (x)] n−1 ⋅ f '(x) cot [ f (x)] − cosec2 [ f (x)]⋅ f '(x)
f '(x)
cosec [ f (x)] − cosec [ f (x)] ⋅ cot [ f (x)] ⋅ f '(x)
√ f (x) 2√ f (x)
a f (x) a f (x) ⋅ log a ⋅ f '(x)
1 n ⋅ f '(x)
− e f (x) e f (x) ⋅ f '(x)
[ f (x)]n [ f (x)] n+1
f '(x)
sin [ f (x)] cos [ f (x)]⋅ f '(x) log [ f (x)]
cos [ f (x)] − sin [ f (x)]⋅ f '(x) f (x)
tan [ f (x)] sec2 [ f (x)]⋅ f '(x) f '(x)
log a [ f (x)]
sec [ f (x)] sec [ f (x)] ⋅ tan [ f (x)] ⋅ f '(x) f (x) log a
Table 1.1.2
SOLVED EXAMPLES
Ex. 1 : Differentiate the following w. r. t. x.
(i) y = √ x2 + 5 (ii) y = sin (log x) (iii) y = e tan x
3
(iv) log (x5 + 4) (v) 53 cos x − 2 (vi) y=
(2x2 − 7)5
Solution : (i) y = √ x2 + 5
Method 1 : Method 2 :
Let u = x2 + 5 then y = √ u , where y is We have y = √ x2 + 5
a differentiable function of u and u is a Differentiate w. r. t. x
differentiable function of x then
. . . . . (I)
[Treat x2 + 5 as u in mind and use the formula
Now, y = √ u
of derivative of √ u ]
Differentiate w. r. t. u
and u = x2 + 5
Differentiate w. r. t. x
du d 2
= (x + 5) = 2x
dx dx
Now, equation (I) becomes,
https://www.ncertbooks.guru/
https://www.ncertbooks.guru/
(ii) y = sin (log x)
Method 1 : Method 2 :
Let u = log x then y = sin u, where y is We have y = sin (log x)
a differentiable function of u and u is a Differentiate w. r. t. x
differentiable function of x then
[sin (log x)]
. . . . . (I)
[Treat log x as u in mind and use the formula
Now, y = sin u of derivative of sin u]
Differentiate w. r. t. u
= cos u and u = log x
Differentiate w. r. t. x
1
=
x
Now, equation (I) becomes,
Note : Hence onwards let's use Method 2.
(iii) y = e tan x (iv) Let y = log (x5 + 4)
Differentiate w. r. t. x Differentiate w. r. t. x
[e tan x] [log (x5 + 4)]
3
(v) Let y = 53 cos x − 2 (vi) Let y =
(2x2 − 7)5
Differentiate w. r. t. x
Differentiate w. r. t. x
[53 cos x − 2]
dy
= 53 cos x − 2 · log 5 × (3 cos x − 2)
dx
dy
= − 3 sin x · 53 cos x − 2 · log 5
dx
5
https://www.ncertbooks.guru/
https://www.ncertbooks.guru/
Ex. 2 : Differentiate the following w. r. t. x.
(i) y = √ sin x3 (ii) y = cot2 (x3) (iii) y = log [cos (x5)]
(iv) y = (x3 + 2x − 3)4 (x + cos x) 3 (v) y = (1 + cos2 x) 4 × √ x + √tan x
Solution :
(i) y= √ sin x3 (ii) y = cot2 (x3)
Differentiate w. r. t. x Differentiate w. r. t. x
= 2 cot (x3) [cot (x3)]
= 2 cot (x3)[− cosec2 (x3)] (x3)
= − 2 cot (x3)cosec2 (x3)(3x2)
dy
∴ ∴ = − 6x2 cot (x3)cosec2 (x3)
dx
(iii) y = log [cos (x5)]
Differentiate w. r. t. x
dy
= (log [cos (x5)])
dx
dy
∴ = − tan (x5) (5x4) = − 5x4 tan (x5)
dx
(iv) y = (x3 + 2x − 3)4 (x + cos x) 3
Differentiate w. r. t. x
= (x3 + 2x − 3)4 ⋅ (x + cos x) 3 + (x + cos x) 3⋅ (x3 + 2x − 3)4
https://www.ncertbooks.guru/
https://www.ncertbooks.guru/
= (x3 + 2x − 3)4 ⋅3 (x + cos x) 2 ⋅ (x + cos x) + (x + cos x) 3⋅ 4(x3 + 2x − 3)3 ⋅ (x3 + 2x − 3)
= (x3 + 2x − 3)4 ⋅3 (x + cos x) 2 (1 − sin x) + (x + cos x) 3 ⋅ 4(x3 + 2x − 3)3 (3x2 + 2)
dy
∴ = 3(x3 + 2x − 3)4 (x + cos x) 2 (1 − sin x) + 4 (3x2 + 2) (x3 + 2x − 3)3 (x + cos x)3
dx
(v) y = (1 + cos2 x) 4 × √ x + √tan x
Differentiate w. r. t. x
Ex. 3 : Differentiate the following w. r. t. x.
(i) y = log3 (log5 x) (ii)
(iii) (iv)
(v) (vi)
7
https://www.ncertbooks.guru/
https://www.ncertbooks.guru/
Solution :
(i) y = log3 (log5 x)
= log3 = log3 (log x) - log3 (log 5)
∴ y = - log3 (log 5)
Differentiate w. r. t. x
[Note that log3(log 5) is constant]
∴
(ii)
∴ [ ⸪ log e = 1]
Differentiate w. r. t. x
∴
https://www.ncertbooks.guru/
https://www.ncertbooks.guru/
(iii)
∴
Differentiate w. r. t. x
∴
(iv)
∴
Differentiate w. r. t. x
https://www.ncertbooks.guru/
https://www.ncertbooks.guru/
(v) (vi)
y = a cot x [⸪ alog a f (x) = f (x)]
Differentiate w. r. t. x
[⸪ alog a f (x) = f (x)] (a cot x )
= sin2 x + cos2 x = a cot x log a · (cot x)
∴ y =1
Differentiate w. r. t. x =a cot x log a (− cosec2 x)
− cosec2 x· a cot x log a
Ex. 4 : If f (x) = √ 7g (x) − 3 , g (3) = 4 and g' (3) = 5, find f ' (3).
Solution : Given that : f (x) = √ 7g (x) − 3
Differentiate w. r. t. x
∴
For x = 3, we get
35 7
= = [Since g (3) = 4 and g' (3) = 5]
2(5) 2
10
https://www.ncertbooks.guru/