MUKUND SIR’S MATHS FOR SSC
STD-12
Ex 5.4
Properties of logarithms
Let m and n be arbitrary positive numbers such that a 0, a 1, b 0, b 1 then
(1) loga a 1, loga 1 0
1
(2) loga b. logb a 1 loga b
logb a
logb a
(3) logc a logb a. logc b or logc a
logb c
(4) loga (mn) loga m loga n
m
(5) loga loga m loga n
n
(6) loga m n n loga m (7) a loga m m
1 1
(8) loga loga n (9) loga n loga n
n
(10) loga n loga n , ( 0)
(11) a logc b b logc a , (a, b, c 0 and c 1)
Laws of indices
(1) a 0 1 , (a 0)
1
(2) am , (a 0)
am
(3) a m n a m .a n , where m and n are rational numbers
am
(4) a m n , where m and n are rational numbers, a 0
an
(5) (a m )n a mn
q
(6) a p / q a p
(7) If x y , then a x ay , but the converse may not be true.
(1) Differentiation of logarithmic and exponential functions :
d 1 d x
(i) log x , for x > 0 (ii) e ex
dx x dx
d x
(iii) a a x log a , for a > 0
dx
d 1
(iv) loga x , for x > 0, a> 0, a 1
dx x log a
Page No: 1
ex
(1) Differentiate the following w.r.t. x
sin x
ex
Ans : Let y
sin x
Differentiating both sides w.r.t. x, we have
dy d ex
dx dx sin x
d d
sin (e x ) ex (sin x)
dx dx sin x ex ex cos x
sin 2 x sin 2 x
ex ( s i n
x cos x )
2
sin x
1
(2) Differentiate the following w.r.t. x esin x
1
Ans : Let y esin x
Differentiating both sides w.r.t. x, we have
dy d sin 1 x
e
dx dx
d 1 1 1
esin (sin 1 x) esin x
x
dx 1 x2
3
(3) Differentiate the following w.r.t. x e x
3
Ans : Let y e x
Differentiating both sides w.r.t. x, we have
dy d x3
e
dx dx
3 d 3 3
ex ( x3 ) ex 3 x2 32x x
e
dx
(4) Differentiate the following w.r.t. x sin (tan-1 e-x)
Ans : Let y = sin (tan-1 e-x)
Differentiating both sides w.r.t. x, we have
dy d
[sin(tan 1 e x )]
dx dx
d
cos(tan 1 e x ) (tan 1 e x )
dx
1 d
cos(tan 1 e x ) x 2
(e x )
1 (e ) dx
Page No: 2
1 d
cos(tan 1 e x ) 2x
e x (x)
1 e dx
1
cos(tan 1 e x ) 2x
e x (1)
1 e
x 1 x
e cos(tan e )
1 e2x
(5) Differentiate the following w.r.t. x log(cos ex)
Ans : Let y = log(cos ex)
Differentiating both sides w.r.t. x, we have
dy d
[ l o g ( c o xs e ) ]
dx dx
1 d
x
(cos e x )
cos e dx
1 d
x
( sin ex ) (ex )
cos e dx
1
( sin e x ) e x
cos e x
e x sin e x
e x tan e x
cos e x
2 3 5
(6) Differentiate the following w.r.t. x ex ex ex ... ex
2 3 5
Ans : Let y ex ex ex ... ex
Differentiating both sides w.r.t. x, we have
dy d 2 3 5
[ ex ex ex . . . xe ]
dx dx
2 d 3 d 4 d 5 d
ex ex (x 2 ) e x (x 3 ) e x (x 4 ) e x (x 5 )
dx dx dx dx
x2 x3 x4 x5
e e 2x e 3x e 4x e 5x
x 2 3 4
2 3 4 5
ex 2xex 3x3ex 4x 3ex 5x 4ex
(7) Differentiate the following w.r.t. x e x ,x>0
Ans : Let y e x
Differentiating both sides w.r.t. x, we have
dy d 1 d
( e x ) (e x )
dx dx 2 e x dx
1 d 1 1 e x e x
(e x ) ( x ) e x
2 e x dx 2 e x 2 x 4 x e x
4 xe x
(8) Differentiate the following w.r.t. x log (log x), x > 1
Ans : Let y = log (log x)
Differentiating both sides w.r.t. x, we have
Page No: 3
dy d
[log(log x )]
dx dx
1 d 1 1 1
(log x)
log x dx log x x x log x
cos x
(9) Differentiate the following w.r.t. x ,x>0
log x
cos x
Ans : Let y
log x
Differentiating both sides w.r.t. x, we have
dy d c o s x
d x d x l o gx
d d
log x (cos x) cos x (log x)
dx dx
2
(log x)
1 cos x
log x( sin x) cos sin x log x
x x
(log x) 2 (log x) 2
(x sin x log x cos x)
x(log x) 2
(10) Differentiate the following w.r.t. x cos (log x + ex), x > 0
Ans : Let y = cos (log x + ex)
Differentiating both sides w.r.t. x, we have
dy d
[ c o s ( l o gx x e ) ]
dx dx
d
sin(log x ex ) (log x ex )
dx
1
sin(log x ex ) ex
x
1
ex sin(log x e x )
x
Page No: 4