oT Q)* fp
£y): fen Oe eaminy
4x fA Some S>o, then
Foy (2% +aiy)
eG
>
dx
a b + Me
Ref et (a ey ey? Fi
A e 2 aX +iys)®
Fy): e T (ys) ft pale +iys) S|
+o. 7
We now pein a G@mplex Change 9 VoSiable Z= =Ltlys Crake
Possible ty guchy's theBem) and gee that the abeve fk Guat to
em tus?
item dzes.emys)*
Notice that ie S=d reget that fCx) = on Sodinpics fe =f
bla. Aa
£ 6)
6 State and piove stngulad Value eecompostifon, WP
Singuich Value: Let "AGE a man matate Then Square not § Ha
9, ATA be cuted xingule Value 4A and. 16 donotect by & ‘oan
te etry » Sa=frg ___:80'on,
Rank § A“ Rumbeg nongas Mrguica values g & géfven the
: q
ContRuctRon 9) Gngulss Value fecom portion
Step 4> ombides the given MARL A, znd the. Agendithon&mal set 9 Etgen vet Ba,
the Etgen yectts in decnecsing Ades depending
See, v= Evijvevs_. J
SiH Moots @ tho Eigen-vabies Called a& Singular
Be fy
@ Slagonal mathit ‘py! using nonzero Singular ‘Values, ond
A, {2 the 2ame Gige G1 A’ with
30g
d-fen-s=ja-l=)
The tabulated value J t-diatatbution at 51. 9 Level g
ge dpen Ps ty 22.201
be, topes 2.k04
since teat 7 ta, = 2.97 t= 2952.9
Ho te Reported at 57. Lev 9 SFgntyEeance
Mote: Ip toa < ty, then ve atcept Ho
Lb tot Zt, then ve nepect Ho
Bh AR 1 Hhdown acy Himes and the Number appcadtng on the (die)
fortlonss the piiowing frequency déstetout? on st)
a)! | [a Js [«
Detect sl as fof setic
Show that the die fy biased at 57. Lovil Of sigagitance (Given
bet Hy. The die 12 untfased
Hy the dee 18 asedThe phequencios tn the given data one the obbeved jee
joe aumed that the die fe unbfasedCf-e-, hen, thrown
expected prequenctes pt the Num bess 1,2,3,4/5,6 OP
2bY - yy eath
ont
a
32 sy.
uy | 44
unda Ho, X= [ -
Ee
JO = Cues (33-04)"4 Cs-uu) 4 (sel), Cou-ua)S (bora
te uy ay uy uy
Fae VE CPS ah +06 4 10> 4 10>
ua ue uy uw Tae
Yor B 2423 + SOFSUTEO
ie Se ee
é
wee [6 4 1UY) 356 4 36+ 1m + 256 = WorlUNtoese4ac rotary
wou ue yy Wy ue Tm
va go8 = 18.3636 = 18.37
rom he YE diataibutt on table at SJ Los andl
dp=n-4= 6-4 es
XK = 10% —— > A¥om the given data
2
Sirce Katte Kak te, 18.3636 >I.040
RS te nejetred at Ss. hos
nd the Singuly, Value decomposition y Ae r uory
fai 2 ee sib
ale [: q ;
Lig -2
Totb4 UUFSb S616
Guts 6 BIFEG Igy
Se-le tSy-14 1964Go-A 100 Yo
160 «1F0-A IYO
4o 140 2e-%
el i... Iwr~ S600] +40 [iyoee | a)
HuUo)-Ior[-iortiuyer)+gofucr +420) = 0
1WYOA+ 10000» - 14 Vooeo Hitoo +22 cage
[3702902 4(- Pabeyr=IU Yoo) +159 OA + Jeno) +I S200 14 Yoco c+ eseRdae
FUSON-a2uWAtO>O => 3- uSos24+32U00
Azao
BEN A-dI)KI-0 = [8e-> I Yo " 4 %,
ico Vo-> 140 %> qed” 20 4
ho uo 2o-rnt L *. F
Pd Az>ato fa Equation @)
Bo-to too YO x a "ato ee a 2
too 1Fo-3b0 fyo [= fo = lip. ee a yea f:
& 140 2e0-%ot Las} Le- wo tue ate) FY OLE
=9901 tievtetuot,s= 0. > ©
o +6
aioe é)
ory tiuotp-ltoxg-0 = © key UA eet toy 41 Cong iue)—CI90%40)
wom © ana fe BP | 22 = (280K 1Ud— Gey)
(oor) —19 022 *tHel,
mae 190 12 = Comt-19) = Cox) 00)
pedo = <2a 2% ep =-m | aa Traut ft pay
tyooo¢4oev -Ba2e-4eoo © $32.00-lov00 2léeov -u 324
0 URPE wy a1i0)
4
opm che fo ag Yay SS elf 2
a e & s
put »=40 tn Equatfon @
eo UO | fe “10 100 4 0 a
2 | 6
19 FyorAo 10 w|qo | > | ww go iu || am JF
» x3
HO ud om -A J LJ ES wo tdo Lo
OX, Fit,+UWoL, =O —> 2)
Lt Gor + Wot>=0 7 (4)) Rox, +!ot, + oXg= 0 —> ®
G2 O [-
oar Sg,
| ae ey
22D _, ne. 00 ~S00-. ipgper oe? ——
Typo- 4000 ~Boo-Lo000 | pgOO -SuED -1 0800
Bee = R= 43 othe ;
oe vo np -
put »=0 tn Equatton (C)
yo-o wo ke 4 eile go to Uo %)
too [0-0 1ue mle] o too Ito [Mo wm |= a
wo tue ro-ol Lxs e. ue two 200- EX
Gor, ttwtz +40, = 0 —>
[ook] + [FOAL TIUOX,= 0 —S> ©
Wot! +1uet2 Pox, =0 (a) “3 Yor Lis lento Poko
go (0 Wo
From and Yo= Bop! YO-loDk UO
© fe a
23> 8k190-100¥1 OD
+%4 = rR KB = Mo seme
tyooo 6800 2H-4oeD ~—13609- L000 #200
S44 2-8 =X OR rales
oo aa
7.” [ate-=o
jo check ee
po extras C093 [8
94272 Xi kg2 [a 4 aieS 2 4-8-2 = Oo
t
L¥g>= Ry Xs> GB ae) [2]
3
eA Wye ta, tye Xs
Tan! Tag igi
me TPB = Gaaw = A
tai Sal:
Biss ices--Ve[By
Ve
a
3 Yo J
= Tx) = Sato = Waeie= 6STo
y= VA, = Vao= avie=3 Sio
2-1R,= VO =0
Now we waite Bingulad nonzero value in pointipal diagonal «
eS a A=[e, vl: a Ade @ Biemmame 229%
EN
°
= b= pean © 24
o 3m e_ aie
\ sg
peasy, om 19% See [ | M3} °°
[ |» ‘ss :
he => 1%
- a vp
Now Abas py > i 0 “1 ie nn
a
& 3-2 ee oe a\*
Alwasfu wy hs [eres : 3]
i: Lg} *8 = | ese ay |
Loy Ee SES
ope un yf gee) rs .
- @3 2-0
2 AS)
ee a) Ty
ae | [ we) a
ere! Lea, Vio
ee
35% [7 ae aes
ie a ey ot 2]
Wie\ . + +1
[9M Yao) Bes, = le w Ow.
Uy,pUa>> [323 )) =
[2 2) e
4 and Ug are Brthogonal Vect sd
us(ua,us) = [Wo - Me
Mio Ho
The cingulad value decom poattion Q A FA
AcuAv = i Yq] [ ite 0° - Ya Pa 73
Ne wen: ioe [+ Yer Us
ts Hs fad
yyX WGOrOK2 HVE — EMied2 HOVE HOKE
Ae [8m “Ase A
OF! aavior 2 + on oa 4 afer) poy-2_ reser hae
2 = 3 3 sg OS tet
Yio *Ao
ne a a “ Pe -| a aviio ute 4S
Yio sf) \bfo/, 28 8% Von % ee =a
[Ee [ Bye eee axe
LyaGots pS 1 xuliet 3 eo 1
Eo Ge
Vio Ge
Ta t2-) 12728 uM TY
art ura) See fs F -a
-! 0
10. Find the Efgen wile and €fgen vectd§ D nfs bs. e |
oO
Tre Elgpn value wre srepsescrted by using D tence
Cig veck % Mepnesented as Ve ‘| ule |
c.
then the etgenvecté f Galcutated by using athe Guation, [A-MT)= 0
aes: 5 on a-» -1 0
cone oy os +) ~2-A DB eho ea i
oo &
oo} ° o 4-n
=v (C2-HCE] - [scr -0] +e [3@)-e Ca >»)
2k) [at 2a - + 7] +1 [3-3>-9 to [e tot o}
= (2A rtp a)t 3-3a 40 = e+ 2d-t - DS a7
S-Barrt+r oJ =
>
8=> RMekcodew-.*(r-DENA-D= 0
pit |, jal
E A=d4
= e21 en
Eigen valle ge U=-), tard + %20
find bow cgenvettcs for az -! AM
K => AACE o> Gaon verth [a-xtJ
“1D “ o
=p 0 [= 2 1B =@)
prd-> 3 O
wel in an ®
ei) -) o Ya f) -} 2
at) Oo wm ||?
Wee a) a3 o
27 3t1-%, +9%,2 0 >@ rom ag bt
— aytar,4+0370 >© i ch 2
) ovsxota +1%320 ~©
mee osta oo 18 sae ge i a
a ae
> f-o 643
wre
Now Find ; o
ia verth tor =) ML equat ton)
pacha) [43d
°
= 2 o 3 @ fon atl aw te
3 it
3u)-242 t0t- O> (bi) [i aH ile
ov tot, 104370 (2
wo saa s 7G sf tiswta tS =>
— =
0-0 0-0 3 ao 2!
the ci vain, cae Yat andy?! and
Etgen veerhs ade Pe) ana fe)@ Getond dopee paabila ty whe method g least
Bie) 2)
(ie
Fammet beier ies
The @quation fe yeatbz+cr® and the n&imol equations axe
Y= ans b&w WO
Fry Eat b&w? +c B'x3 -O
dy aes eter car! oO)
the value, one taltelated using the follontng fable
heed ne
ay xy Le.
4 Joyo tego
46 2uyo 4ysso
at 34 upto | msto
ash | 6500 | 26000
s | sas 47895
oy
1as~
abner Dey =23%5| «ranges
gubitttuting thee Value, % the ndmat equatfors. 0 6,0
scenes GE? Bartle bt55C =494) —@
45Q4 SHD FASC = 8377S -6©
55 a4 987 b 49946 = 35S -O©
Save the equattord (D and (© and diningte VA ase a"
multi py equatten @ by 8:
—e Sf
95% = ee LOL EES OTST = IDIVS
[sq 4 TSbIDSC = 2379F Cree eer eS
eiDerietr “Zeke
> ob+boc= wso —)
ete ne equations (®) and G ond ebininate, vartable ‘a’,
muy uation ne
"legal Ory: 5 Bept log b+ 6056 = 79,65) —
50+ 16 wees ce aac Rf by 4 995b+979G = 99355
Oe oO 9 ©
Geax 5 bt arAC= 49355
D pep — B7e6 2-12, WY
ae et-39U6 = 12F04 —-@
g equations (H) and @) and elfminate Vasfuble 'b
lebt60G -aosa —>x¥ by & era 12819
60b+394C= en 4394 C= 1250!
YC= 1904 © oS Ze UG is y
~lud =e 99
=> 2 2
Now neplace G Value th éqeatton(Z) E232] >/@238
fob+60G= 26582 > lob+bo Qoe)=2059
=> 10b+8GR0=2052 = b= 252-1680
lobz 37a =>[bz 39.9
Now veplate “6° and ‘co’ Value en equation (¢))
Satisb+55 C= ay]
Gay 18(39.2)F S508) > F2Y/ > SarsseziSlo> FIYy)
5a$9098= FAY. => Sa= tay1-209g
sa>5l43 => [as 1028.6)
Nol Substituting file vats fn the equatfon Y= aperrer no 4
yz 028. 643792 +98 e
I. find the Ove 9 best fir g the type Y=ae*h wo the folloctng
by"*method, 5 leit Syucres «
Y= ipso, *
Taking beg on both ides
bt
Logy -Lo4 w+ bog e
2 bogy = = bela
yo at B®
The nAmal eqpations ore
ayeaateF* —-O
guys AULT BET >)«
HY fp ae
1 WL= 0} :
5 iz ISkuB= 5.9 | @S
1 12 ayes: 356] 49
4 Is Geis =l06R] BA
ie 2 x19 Issy duy
EN 546 ALY -40.92| Gxr=3 od
2 @quattons (1) and ® :
Now eplace Valle,
Spy puss 6 FO
aun + Bo0B = 40.92 2@
gave the above equations » multiply en © by 34 and an @ by #8
tof +hSeBz 199,94
AWA FISMB= 204. & Bes 5
belo © 0.0asy
~Buy Bs -E.96 am
Now veplace +B vame 9 Suction @.
5 Ayaylo. o2sd)= 5.96 SA +0.08636 > 5.6
Bro 5 46—0-08636 & Gi QTaby
ney, 94 or 420.9992 = 0:98
or
5°
on But Loy A> ae |
04 Bodog, t # &= 2° He
a= ti te a= 120592
Yor alee -
\ yeasel
a