0% found this document useful (0 votes)
8 views47 pages

Paper 1 Unit 1

The document discusses decision-making problems in statistics, focusing on the uncertainty of parameter estimation and the effects of gender on hypothesis testing. It outlines various approaches to decision problems, including Bayesian and frequentist methods, and emphasizes the importance of risk functions in making informed decisions. Additionally, it highlights the role of sample information in estimating probabilities and making conclusions about populations.

Uploaded by

Disha Sojrani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
8 views47 pages

Paper 1 Unit 1

The document discusses decision-making problems in statistics, focusing on the uncertainty of parameter estimation and the effects of gender on hypothesis testing. It outlines various approaches to decision problems, including Bayesian and frequentist methods, and emphasizes the importance of risk functions in making informed decisions. Additionally, it highlights the role of sample information in estimating probabilities and making conclusions about populations.

Uploaded by

Disha Sojrani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 47
! ' I I I t | | | It | | t | (Biatisteal Dacision “FEetium q Reoblem of nek ng decisleng a& causing inptence about pep” poameke. “et 5 toran vets. knouutedae. obeut the uncertainty at Ex: The av volue af something may be hitfueent in " one aid) te ofhee- ler mates aoe have higher HB values, 00 A than Les + = The eferk of gnde en HB by the | chipperence in mean moles and females fn protitical infrrence, me dtuuly tue type blews He be? peo’ . peal 4 Tuting of Mapetiet Extimation ay Problem oF ; a both = the preblery , we colour conclusions, ob make letizian about the Popes ee paren eft an the — burp of Sample boete. oe ceturekr suonts 10 clecile usher the 40t produced +heutdis be gent to the matket ce not. He é olecidl eg it on the = bawit op pope $ 4 Hy: p< bo ue uthith wan be terted on the bous oy TRE manufactueee selects dompie | laf ectives « Ao, he paperms one of sre floni g Be tead the dat tp ate mental ip eG propecia ipl of clefectins i the det is Sfp wheet po ia predetermined mo Cie Spo 7 send the ter) } Q, + Do not send the dot if p> be 4 | ! | oe futing oF Hegpetheeis problem (an be Considered as a Sfatdrtical Deciston faobLem- Ex : Contidte a joerree uhse hos sour home eds and he wants 48 frow how m them i eC ae ah ace ¥ obalaiey sample of ©n? seeds wand ausdate tv x such that R=] 5 cd the wed in the sample fa ° 5 IL the seed in the sample Last Fe inate “Tr enema 40 he hos we seceapsbe, geguence 5 § oa for the sample of aceds. The prepertin of feeds sahich eeminate can be tetimealid frem the sample waning the sample pepetion Jeo b lem oF ethrotin fe tonsiclered 4 Describe Carmpenerts oft ae Detlsjon Peshl, Cot decivien blem , 2k ee howe the prctuledge, of Otto wing hogs “f ehements fu Components f a ms Peck lems @ 2 = Patametele space + Et the 4h gp at perible values of param chet: © A= Actian spoce + THU sre ot F powible ry aa d(xy whee d denates the clecisfen function © = Semple que ee ME tT “al epthle valucs Laker sack si ts, si ins Nr i es £ ¢ aa AL Vanable %- the [oe @® Lioa) > bow Fen whine B anocated +” my “ er ap the eT pncian meaty 7 atrin 44 fpr ye oO Or ---- a, L06) a) LC, a1) ~ ~*~ LE_ au} ae 1 1 \ as fo 8 ben an Q Explain the tus 5 deckiton pasklem. | Sfprecches The dedtien peoblem can be studied suing btpeent Approaches - a of States infomation make clecirion about pop? pasam hie — The sam infotmetion 41 combined with other — eleven asped +h the problem 79 make the 7 beck — ol etinion. @ Baysino Approach + Tn ss approach @ is Consiclertd as randem variable -and it & net probabilities ate vousaciated uith tv 0. @ Apeioes Peebabit i The péebabitity which i known, before drawing dample is tolled apeied eobabi lity. This eobedbility ods not end upen de ately denoted gle) wand itis anteined © Posterioe Probability? Th probability 4 obtained by combining the sample fnjesmation with the ‘ ebabili cand ince this ptobabil ar Pike pres de Sample if i eid we pasteuios probability and dé is denoted Wy §C8/x). bn cadditien te dam in, ation tuo athese ® ° 0 Ge af (ten given nt teins of lost each pastible ceceien (i) The aucond £auece nan sample information post exp lence bout gimilat gitvakians iniblving similoz 6° d The taw material foe gfatirtical invert ation is the eet of phsetvot'ens thi. ate, the Voted teLken the ev ew. the ws ef dut if 4 Krenn of Zz Ww an ulement ef ensun of astrs Pe any element of P -can be, denated by fy 1 G6 ushers -2 le the. eo mag be re single porametee 06 i may i Tngrtence deaty usith hour beak ate con wae the dat, %0 chtained the. information pout the unknown dit? 2. ghee. 0 which Lebels the obiat” q OEE Bh ee | eusion Aule» TREE ake, a4 tes snd ue hove f dele the ra 7a aa fea oes ane 2 CE Lissa) 20 eco aad — +) e “pne_at & fee GQ Risk Function glicce hose fe whe. Zander -auantity at 3 based on. at alas bes 'veltiee WV —aaestegt ot expected: Aou in 0 on. A adllx) fo the lap : bunt) and Hal Le called as At) a Chuy the ed VALLE Lye. wh teh er Both at Both fespuentist wand Boyeian ive U deutien bared on re _ expeckee Leet volue oy ’ tox chien However , this quantity Yas detined Aifpeently . one hauld choose HL pelian ip minimizer the accepted ose - ) Bayesian Expected Lose: 4 ue DHE expected Aows considering uncertainty 8 gine 9 Bb a tv © it unknolunat the AE sty making clecitions - TE $8) as the probabhity jay var of 6 ot the time oe decision see Then « Pan expected doug ip a peli (a! ib given ye Rlo,ay= E [cea] = j ae age) | Leen) Sted > Cort CHR = Le@,a) §Coe) z mee dist core duppace the Loss fonction 4s given 4 ® [= =] Oz | tooo = - 30°. and pee dit? af © a 800) = 0-9 Ge daa e n= = - To find out the tek function Rlqjad =ELC@,ad Sco = Uo, a) SOF LOO, %) F Cop) = @g (-500) *O-9 + (-300) *o4 = -460-2T0 =~ 7120 RU : 625%) = LO, 19) $C) + Lb (G21) SCs) = OLpeo # LOL ee (e320) F Ol oS 4 ® Feequentist Risk Function 3 Here , the expected dors tp howd ott the 44%, ue have ned d= a(x) os the decision tute urhich depen en clined 24 ot = 5 [ eco, dz] z . a ~~ PENTEL e = = L(0,dw) fe OD 2 us con. & UY deen poraion da defined as dee & x = In thu appa a i ey hore dah ig fe) & & , coy ese Oo foeeen fee . ee ee Az fayet - € ooo! 7s aw th prob. 3ly $ < 4 ©=-G& » X= ee pred Aly : find Rsk Function i 9 a € o aly ‘Iq 3 Peobability matesx é Or [4 ly é { t { Fat we will hove pane dipper Aeciain sabes a4 ° (=f) ; Z p Oo © “\ then, = ide) Fed Ri den) = & [ Leo, dew) J 2 z Lee ee) Pe The porte decivins are RY} 9, ow a, _ S03 Fok Motu R(@ d= ELE Po . a = LLo, d C2] Po %) + LCS d(x) 7 R @ [it a oe "4 8h S IXE HT RIXE =I Rie, du) = : = L(G 5di) Py (2) LL, dy Cu) Py ,(%2 tL6O, 9, (4) Pe 6%) a 7 oa R(8, , 4) = z L (0, ,d2) fe = LLG, ACK] Po, (4) + £00, A) OH? . zx! + + no a R(6,,43) = = L106, 45) fe, 0%) * i RG, 9 dy) = Eble, ) Fo, Qa Ra, di) =3 : RO, d) = Bs Resch I= 1B , R (62544) = 4 dud. da Risk Function = 61 d Sly Hy 2 6, [3 hy Be ¥ ays I 4 a See The. wofnt that A dpe fite A 4D he Ate Oe datas, ie Ly a Lag i clipfet ence bef = ‘ ear es Value ®and extimates ALhSh vel - Mike 29_ aoe + Poatble wd =a woth dd Sa ie! Irises t hii cry commen exam le fovolres "docatien" andy Ay pica Pf asesinoptions the. "mean. 6 CA he APodistic foe i —echenll | ZhaOd mob mofecs — [eH an Speke ve tenced undee the Yu ated Shige lost has wiAfle medtan |: the erhtenahe thot . pop Abts undef alu clitt. MHONCE Lidid function. = Udi} fekent el timate a sesld he satin undes other —deps ADLON On TU teowmdtances + ec it 7 fy the renter! 4 2lenorntry Abit wth Que wi ually eLenemie Catt ge. ; a 7 = segted dD thawifs VON y Wa phe _ evynally puted io esh'mation ptallems- fh alt Anh fared eshimatees JO tuere being conutdlebod. since thea — the eupscte (VOLE @ the dott_l: - Ela-o')* youl pb the vardnce | Of. the__tutiona tee =a eis Rte.) = (2) linen lost Funstibnr The oa the oo ie eas at HCA = 6) 5, a ip ae ___ difierent Ms ——eguol, th. : aie Haste Lost lau = The Matas la ie ie bee = 40, 1a — _We denous “ane cu) Logs i fo the : testing. of othe 219 € ke Hit eer pat ated — dat —faiiicia. Lobia Gp = Accent Hy L ay = Refick ot accent H, Le 0p oe ty im Lesa) =0 if e ¢ 0, eo e.g Sah fet tact the Bick funda i fo > Rea) =f lea] 1g BE EE Pasbl adion oxeecd]- im 1x Paebl faction #1 ej 2 cases = = — j as os the mena : Saat dunt rae foe path all neon 2Lanclom: ed of L ae apna Sart ah a wahen RCO Wdee)) a r dy oe pone 4 } Uni'feem Betfee Detiaien Pubes 4 detiFian sue di cr aid tebe uni ptoly bethut than decirion sule d,| He ROADS R18, ob) V6 6.0. Land. Rl idi) < Req) sad beast por one 6 + entimum Decl ion. pule declrion tule dt ed le gaid to be te oo “ yunthen ee, =(6=a)* _! _ R(@a) = i Thi kick wi be min® > ed A=O ee _ the. — opti? deeiao eile. enitls : L p= $8,,0 =£8),02 aie and fet _o= SO a tas Cs tule and tb OM, i SO, uk tee — et dan ith the a. / Yelk

You might also like