38 V, 1.5 A Synchronous Step-Down Converter With 20 A Quiescent Current
38 V, 1.5 A Synchronous Step-Down Converter With 20 A Quiescent Current
Datasheet
Features
• 3.5 V to 38 V operating input voltage
• Output voltage from 0.85 V to VIN
• 3.3 / 5 V fixed output voltage versions
• 1.5 A DC output current
• 20 μA operating quiescent current
• Internal compensation network
SO 8L
• Two different versions: LCM for high efficiency at light-loads and LNM for noise
sensitive applications
• 2 μA shutdown current
• Internal soft-start
• High voltage VIN compatible Enable
• Output overvoltage protection
• Output voltage sequencing
Maturity status link • Thermal protection
L6981 • Synchronization to external clock for LNM devices
• SO8 package
Applications
• Designed for 24 V buses industrial power systems
• 24 V battery powered equipment
• Decentralized intelligent nodes
• Sensors and always-on applications
• Low noise applications
• Smart meters
• Robot cleaner
Description
The L6981 is an easy to use synchronous monolithic step-down regulator capable
of delivering up to 1.5 A DC to the load. The wide input voltage range makes the
device suitable for a broad range of applications. The L6981 is based on a peak
current mode architecture and is packaged in an SO8 with internal compensation,
thus minimizing design complexity and size.
The L6981 is available both in low consumption mode (LCM) and low noise mode
(LNM) versions. LCM maximizes the efficiency at light-load with controlled output
voltage ripple so the device is suitable for battery-powered applications.
LNM makes the switching frequency constant and minimizes the output voltage
ripple for light-load operations, meeting the specification for low noise sensitive
applications.
The EN pin provides output enable/disable functionality. The typical shutdown current
is 2 µA when disabled. As soon as the EN pin is pulled up the device is enabled
and the internal 1.3 ms soft-start takes place. Pulse-by-pulse current sensing on
both power elements implements an effective constant current protection and thermal
shutdown prevents thermal run-away.
1 Diagram
2 Pin configuration
SW 1 8 PGND
BOOT 2 7 VIN
VCC 3 6 AGND
VOUT/FB 4 5 EN/CLKIN(*)
1 SW Switching node
Connect an external capacitor (100 nF typ.) between BOOT and SW pins. The
2 BOOT gate charge required to drive the internal NMOS is refreshed during the low side
switch conduction time.
This pin supplies the embedded analog circuitry. Connect a ceramic capacitor
3 VCC
(≥ 1 µF) to filter internal voltage reference.
This pin operates as VOUT or FB according to the selected part number. In
fixed output voltage versions, VOUT is the output voltage sensing with selected
4 VOUT/FB
internal voltage divider. In adjustable versions, FB is output voltage sensing with
external voltage divider.
Enable pin with internal voltage divider. Pull down/up to disable/enable the
device.
5 EN/CLKIN
In LNM versions, this pin is also used to provide an external clock signal, which
synchronizes the device.
6 AGND Analog ground
7 VIN DC input voltage
8 PGND Power ground
L 33 µH Output inductor
Stressing the device above the ratings listed in the table below may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or any other conditions above those indicated
in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may
affect device reliability.
HBM 2 kV
ESD ESD Protection voltage
CDM pins 500 V
5 Electrical characteristics
IVY_SINK (1)
Reverse current limit LNM or VOUT overvoltage 1.25 1.5 1.75 A
Enable
Rising 0.7 V
VWAKE_UP Wakeup threshold
Falling 0.2 V
Rising 1.08 1.2 1.32 V
VEN Enable threshold
Hysteresis 0.2 V
VCC regulator
VCC LDO output voltage 3.0 3.3 3.6 V
Power consumption
ISHTDWN Shutdown current from VIN EN = GND 2 3 μA
LCM Device
LNM Device
ADJ part number 1.6 2.3 3 mA
IQ_VIN Quiescent current from VIN
Fix VOUT part number 300 550 800 μA
IQ_VOUT Quiescent current from VOUT Fix VOUT part number 1.3 1.8 2.3 mA
Soft-start
TSS Internal soft-start 1 1.3 1.6 ms
Error amplifier
Adjustable version TJ = 25 °C 0.845 0.85 0.855 V
VFB Voltage feedback Adjustable version TJ = -40 °C ≤ TJ ≤ 125 °C (3) 0.842 0.85 0.858 V
Overvoltage protection
VOVP Overvoltage trip (VOVP/VREF) 115 120 125 %
VCLKIN_TH
(4)
Amplitude of synchronization clock 2.3 V
Thermal Shutdown
1. Parameter tested in the static condition during testing phase. The parameter value may change over a dynamic application condition.
2. LCM version.
3. Specifications in the - 40 to 125 °C temperature range are assured by characterization and statistical correlation.
4. LNM version.
5. Not tested in production.
6 Functional description
The L6981 device is based on a “peak current mode”, constant frequency control. Therefore, the intersection
between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the
power switch.
The device features LNM (low noise mode) that implements a forced PWM control, or LCM (low consumption
mode) to increase the efficiency at light-load.
The main internal blocks shown in the block diagram in Figure 1 are:
• Embedded power elements
• The ramp for the slope compensation to avoid subharmonic instability
• A transconductance error amplifier with integrated compensation network
• The high-side current sense amplifier to sense the inductor current
• A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements
• The soft-start block ramps up the reference voltage on error amplifier, thus decreasing the inrush current at
power-up. The EN pin inhibits the device when driven low
• The EN/CLK pin section, which for LNM versions, allows synchronizing the device to an external clock
generator
• The pulse-by-pulse high-side / low-side switch current sensing to implement the constant current protection
• A circuit to implement the thermal protection function
• The OVP circuitry to discharge the output capacitor in case of overvoltage event.
6.1 Enable
The EN pin is a digital input that turns the device on or off.
In order to maximize both the EN threshold accuracy and the current consumption, the device implements two
different thresholds:
1. The Wake-Up threshold, VWAKE_UP = 0.5 V (see Table 6)
2. The Start-Up threshold, VEN = 1.2 V (see Table 6)
The following image shows the device behavior.
EN(t)
VEN Rising = 1.2 V
SW(t) t
IVIN (t) t
IS_OPVIN I S_OPVIN
ISHDWN = 2 µA
ISHDWN = 2 µA
t
When the voltage applied on the EN pin rises over VWAKEUP, RISING, the device powers up the internal circuit
increasing the current consumption.
As soon as the voltage rises over the VEN, RISING, the device starts the switching activities as described in
Section 6.2 Soft-start.
Once the voltage becomes lower than VEN,FALLING, the device interrupts the switching activities.
As soon as the voltage becomes lower than VWAKEUP,FALLING, the device powers down the internal circuit
reducing the current consumption.
The pin is VIN compatible.
Please refer to Table 6 for the reported thresholds.
6.2 Soft-start
The soft-start (SS) limits the inrush current surge and makes the output voltage increase monotonically.
The device implements the soft-start phase, after 800 μs typical tsetup delay, ramping the internal reference with
very small steps. Once the SS ends, the Error Amplifier reference is switched to the internal value of 0.85 V
coming directly from the band gap cell.
EN(t)
VEN Rising =1.2V
t
VCC(t) VVCC = 3.3V
SW(t) t
VREF =0.85V
EA Reference(t) t
t
tSETUP tSS = 1.3ms
During normal operation, a new soft-start cycle takes place in case of:
1. Thermal shutdown event
2. UVLO event
3. EN pin rising over VEN threshold. Please refer to Table 6.
A new switching cycle takes place once the voltage on the FB pins becomes lower than VFB,LCM.
The HS switch is kept on until the inductor current reaches ISKIP.
Once the current on the HS reaches the defined value, the device turns the HS off and turns the LS on. The LS is
kept enabled until one of the following conditions occurs:
1. The inductor current sensed by the LS becomes equal to zero.
2. The switching period ends.
If, at the end of the switching cycle, the voltage on the FB pin rises over the VFB,LCM threshold, the LS is kept
enabled until the inductor current becomes equal to zero. Otherwise, the device turns on the HS again and starts
a new switching pulse.
During the burst pulse, if the energy transferred to COUT increases the VFB level over the threshold defined in
Equation 1, the device interrupts the switching activities. The new cycle takes place only when VFB becomes
lower than the defined threshold. Otherwise, as soon as the LS is turned off, the HS is turned on.
Given the energy stored in the inductor during a burst, the voltage ripple depends on the capacitor value:
T
∆ QIL ∫0 BURST IL t dt
VOUT RIPPLE = C = (2)
OUT COUT
Figure 9. LCM operation with ISKIP = 350 mA typ. at zero load. L = 33 μH; COUT = 32 μF
Figure 10. LCM operation at zero load condition (part 1-pulse skipping)
Figure 11. LCM operation over 15 mA load condition (part 2-pulse skipping)
Figure 12. LCM operation over 100 mA load condition (part 3-pulse skipping)
Figure 13. LCM operation over 190 mA load condition (part 4-CCM)
Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi-layer
ceramic capacitor (MLCC).
6.4.3 Efficiency for Low consumption mode and Low noise mode part number
Figure 15 and Figure 16 report the efficiency measurements to highlight the gap at the light-load between LNM
and LCM part numbers. The graph reports also the same efficiency at the medium / high load.
Figure 15. Light-load efficiency for low consumption mode and low noise mode - linear scale. VIN = 24 V;
VOUT = 5 V; FSW = 400 KHz.
100
90
80
Efficiency [%]
70
60
50
40
30 LCM
20 LNM
10
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4
IOUT [A]
Figure 16. Light-load efficiency for low consumption mode and low noise mode - log scale. VIN = 24 V;
VOUT = 5 V; FSW = 400 KHz.
100
90
80
70
Efficiency [%]
60
50
40
30
20 LCM
10 LNM
0
0.0001 0.001 0.01 0.1 1
IOUT [A]
6.4.4 Load regulation for low consumption mode and low noise mode part number
Figure 17 and Figure 18 report the load regulation to highlight the gap, given by the different regulation strategy,
at the light-load between LNM and LCM part numbers. When the required IOUT is higher than the threshold
defined in the Low consumption mode (LCM) paragraph, the behavior of the different part numbers is the same.
Figure 17. Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - linear scale
2.5
LCM
2
Load regulation [%]
LNM
1.5
0.5
-0.5
0 0.2 0.4 0.6 0.8 1 1.2 1.4
IOUT [A]
Figure 18. Load regulation for LCM and LNM part numbers. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - log
scale
2.5
2 LCM
Load regulation [%]
1.5 LNM
0.5
-0.5
0.0001 0.001 0.01 0.1 1
IOUT [A]
VOUT (t)
VOVP
VOVP_HYST
VOUT, LCM
t
Isw(t)
ISKIP
t
ISKIP_LNM
IVY_SINK
SW(t)
VIN
VOUT
t
Body Diode HS
TON,min LS
As soon as the output voltage goes out of the OVP hysteresis (typ. 2%) the L6981 device sets the switching node
on high impedance. It restarts the switching activity accordingly with the main loop regulation of the peak current
mode architecture.
The LNM device regulates the output voltage with valley sinking capability down to the negative current limitation
(IVY_SINK in Figure OVP Event Low Noise Mode part number). This hysteretic operating mode between peak
current mode threshold (ISKIP_LNM) and modulated low side switch conduction time for VOUT regulation
persists until the valley current level triggers the negative current limitation (IVY_SINK), that is the maximum
sinking capability of the device (highlighted in green in Figure 20).
If the source injection further increases, the output voltage is a partitioning between source impedance and
maximum sinking capability above described (highlighted in blue in Figure 20).
In case the current diverges because of the high-side masking time, the low-side power element is turned on until
the switch current level drops below the valley current sense threshold. The low-side operation is able to prevent
the high-side turn-on, so the device can skip pulses decreasing the switching frequency.
In a worst case scenario, reported in Figure 21 of the overcurrent protection, the switch current is limited to:
V − VOUT
IMAX = IVY + IN ∙ TMASKHS (5)
L
Where IVY is the current threshold of the valley sensing circuitry (please refer to Electrical characteristics table)
and TMASKHS is the masking time of the high-side switch.
In most of the overcurrent conditions, the conduction time of the high-side switch is higher than the masking time
and so the peak current protection limits the switch current.
IMAX = IPEAKTH (6)
Figure 22 shows the L6981 soft-start procedure with VOUT shorted to GND.
Figure 23 shows the L6981 over current protection with a persistent short-circuit between VOUT and GND.
Figure 23. Over current procedure with persistent short circuit between VOUT and GND
The following image shows the typical compensation network required to stabilize the system.
1 + ωs
1 Z ∙F
GCO s = RLOAD ∙ gCS ∙ ∙ H (8)
RLOAD ∙ TSW s
1+ ∙ mC ∙ 1 − D − 0.5 1 +
L ωP
Where RLOAD represents the load resistance, gCS the equivalent sensing trans-conductance of the current sense
circuitry, ωP the single pole introduced by the power stage and ωZ the zero given by the ESR of the output
capacitor. FH (s) accounts the sampling effect performed by the PWM comparator on the output of the error
amplifier that introduces a double pole at one half of the switching frequency.
1 mC ∙ 1 − D − 0.5
ωP = R + (10)
LOAD ∙ COUT L ∙ COUT ∙ fSW
Where:
S
mC = 1 + Se
n
Se = ISLOPE ∙ fSW (11)
VIN − VOUT
Sn = L
Where ISLOPE is equal to 1 A.
Sn represents the ON time slope of the sensed inductor current, Se the ON time slope of the external ramp that
implements the slope compensation to avoid sub-harmonic oscillations at duty cycle over 50 %.
The sampling effect contribution FH (s) is:
FH s = 1 (12)
s s2
1+ ω ∙Q + 2
n P ωn
Where:
1
QP = (13)
π ∙ mC ∙ 1 − D − 0.5
RC and CC introduce a pole and a zero in the open loop gain. The transfer function of the error amplifier and its
compensation network is:
AVO ∙ 1 + s ∙ RC ∙ CC
AO s = 2 (14)
s ∙ RO ∙ CO ∙ RC ∙ CC + s ∙ RO ∙ CC + RO ∙ CO + RC ∙ CC + 1
Where:
AVO = Gm ∙ RO (15)
fZ = 2 ∙ π ∙ R1 ∙ C (21)
1 R1
1
fP = (22)
R1 ∙ R2
2 ∙ π ∙ R + R ∙ CR1
1 2
fZ < fP (23)
The device turns on when the average of the signal applied is higher than VEN rising (refer to Table 6). The device
turns off when the average of the signal should be lower than VEN falling (refer to Table 6).
Considering, for example, a clock source with VPP = 5.0 V, the minimum duty cycle to guarantee the power-up is
given by:
VEN, TH Rising
Dutymin = = 0.24 (27)
VPP
The maximum duty cycle to guarantee the turn off is given by:
VEN, TH Falling
DutyMAX, = = 0.2 (28)
VPP
2.3 70 45
3.3 20 30
5 20 20
The minimum amplitude for the external clock signal is, for both configurations, equal to 2.3 V.
The network given by CEN and RENL sets a high pass filter. Considering a resistor in the order of 220 KΩ, a
capacitor equal to 1 nF is a correct choice.
CR1 capacitor is sometimes useful to increase the small signal phase margin (please refer to Section 7 Closing
the loop)
1− D D
IRMS = IOUT ∙ η ∙ η
(30)
Where IOUT is the maximum DC output current, D is the duty cycles, η is the efficiency. This function has a
maximum at D = 0.5 and, considering η = 1, it is equal to IOUT/2. In a specific application, the range of possible
duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and
minimum duty cycles can be calculated as:
VOUT + ∆ VLOWSIDE
DMAX = V (31)
INmin + ∆ VLOWSIDE − ∆ VHIGHSIDE
VOUT + ∆ VLOWSIDE
Dmin = V (32)
INMAX + ∆ VLOWSIDE − ∆ VHIGHSIDE
Where ΔVHIGHSIDE and ΔVLOWSIDE are the voltage drops across the embedded switches. The peak-to-peak
voltage across the input filter can be calculated as:
I
VPP = C OUT ∙ 1− D D
η ∙ η + ESR ∙ IOUT + ∆ IL
(33)
IN ∙ FSW
In case of negligible ESR (MLCC capacitor), the equation of CIN as a function of the target VPP can be written as
follows:
I
CIN = V OUT ∙ 1− D D
η ∙ η
(34)
PP ∙ FSW
Considering η = 1 this function has its maximum in D = 0.5:
I
CINmin = 4 ∙ V OUT ∙ F (35)
PPMAX SW
Typically, CIN is dimensioned to keep the maximum peak-to-peak voltage across the input filter in the order of 5 %
VINMAX.
In the following table, some suitable capacitor part numbers are listed.
Where QP has been defined in Section 7.1 GCO(s) control to output transfer function. The peak current through
the inductor is given by:
∆I
IL, PK = IOUT + L (39)
2
So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device)
increases. The higher the inductor value, the higher the average output current that can be delivered, without
reaching the current limit.
For a ceramic (MLCC) capacitor, the capacitive component of the ripple dominates the resistive one. While for
an electrolytic capacitor the opposite is true. Neglecting the ESR contribution, the minimum value of the output
capacitor is given by:
∆ IL, MAX
COUT, min, RIPPLE = (41)
8 ∙ ∆ VOUT ∙ FSW
As the compensation network is internal, the output capacitor should be selected in order to have a proper phase
margin and then a stable control loop. A good rule to obtain a proper dimensioning for the minimum amount of the
output capacitor is to set the target system bandwidth equal to FSW/10. The following equation takes into account
the precedent consideration:
∙ 10−3
COUT, BW, MAX = 0.48 (43)
VOUT
9 Application board
L1 MSS1038T-333M
L
L2
n.m.
L1 33mH TP6
C13 R6
C4 C5 C6 VOUT
n.m. n.m. 22mF 10mF n.m.
U1
TP1 EN
EN 1 8
SW PGND
C7 R1
2 7 VIN _L6981
TP2 BOOT VIN
C9
CLK_IN 100nF 0 Ohm 3 6
n.m. VCC AGND C2 C1
R4
4 5 1mF 10mF
FB EN/ SY NC 10k
C3
J1 J2 1mF 10V EN
L6981CDR
R5
L3 L4 R3 n.m.
TP3 VIN _L6981 R2 402K
VIN
MPZ2012S221A 4.7mH
82.5K
C11 C12 C14 C10
+ C8
4.7mF 4.7mF 4.7mF n.m.
10pF
TP5
TP4
GND
GND
The additional input filter (C11, L3, C12, L4, C14 and C10) limits the conducted emission on the power supply.
C1 C3216X7R1H106K160AC 10 µF TDK
C2 CGA4J3X7R1H105K125AB 1 µF TDK
C3 1 µF
C4 GRJ32EC71E226KE11 22 µF Murata
C6 n.m.
C5 C3216X7R1H106K160AC 10 µF TDK
C7 100 nF
C8 10 pF
C9 n.m.
C10 n.m.
C11, C12, C14 GRM31CR71H475KA12 4.7 µF Murata
C13 n.m.
L1 MSS1038T-333ML 33 µH Coilcraft
L2 n.m.
L3 MPZ2012S221AT000 220 Ω, 100 MHz TDK
L4 XAL4030-472ME 4.7 µH Coilcraft
R1 0Ω
R2 402 kΩ
R3 82.5 kΩ
R4 10 kΩ
R5 n.m.
R6 n.m.
U1 L6981 STMicroelectronics
10 Efficiency curves
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
• COUT:
– 1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
– 1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
• Inductor:
– MSS1038T-333ML (Coilcraft)
• C8:
– 10 pF
100
90
80
Efficiency [%]
70
60
50
40 Vout = 5 [V] Fix. LCM
IOUT [A]
Figure 35. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz (log scale)
100
90
80
70
Efficiency [%]
60
50
40
Vout = 5 [V] Fix. LCM
30
Vout = 5 [V] Fix. LNM
20
Vout = 5 [V] Adj. LCM
10 Vout = 5 [V] Adj. LNM
0
0.0001 0.001 0.01 0.1 1
I OUT [A]
1 8
0.9 Vout = 5[V] Fix. LCM
7
0.8 Vout = 5[V] Fix LNM
6
Power losses [W]
POUT [W]
0.6
Pout
0.5 4
0.4 3
0.3
2
0.2
0.1 1
0 0
0 0.5 1 1.5
IOUT [A]
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
• COUT:
– 1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
– 1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
• Inductor:
– MSS1038T-333ML (Coilcraft)
• C8:
– 10 pF
100
90
80
70
Efficiency [%]
60
50 Vout = 5 [V] Fix. LCM
40 Vout = 5 [V] Fix. LNM
30
Vout = 5 [V] Adj. LCM
20
10 Vout = 5 [V] Adj. LNM
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4
I OUT [A]
Figure 38. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz (log scale)
100
90
80
70
Efficiency [%]
60
50 Vout = 5[V] Fix. LCM
40
Vout = 5[V] Fix. LNM
30
20 Vout = 5 [V] Adj. LCM
10 Vout = 5[V] Adj. LNM
0
0.0001 0.001 0.01 0.1 1
IOUT [A]
0.8 8
Vout = 5 [V] Fix. LCM
0.7 7
Vout = 5 [V] Fix. LNM
Power losses [W]
POUT [W]
Vout = 5 [V] Adj. LNM
0.4 Pout 4
0.3 3
0.2 2
0.1 1
0 0
0 0.5 1 1.5
IOUT [A]
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
• COUT:
– 1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
– 1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
• Inductor:
– MSS1038T-223ML (Coilcraft)
• C8:
– 10 pF
100
90
80
70
Efficiency [%]
60
50 Vout = 3.3 [V] Fix. LCM
40
Vout = 3.3[V] Fix LNM
30
Vout = 3.3 [V] Adj. LCM
20
10 Vout = 3.3 [V] Adj. LNM
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4
I OUT [A]
Figure 41. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale)
100
90
80
70
Efficiency [%]
60
50
40 Vout = 3.3 [V] Fix. LCM
30 Vout = 3.3[V] Fix LNM
20 Vout = 3.3 [V] Adj. LCM
10 Vout = 3.3 [V] Adj. LNM
0
0.0001 0.001 0.01 0.1 1
IOUT [A]
Figure 42. Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz
0.8 6
Vout = 3.3 [V] Fix. LCM
0.7
Vout = 3.3[V] Fix LNM 5
Power losses [W]
0.6
Vout = 3.3 [V] Adj. LCM
4
POUT [W]
0.5 Vout = 3.3 [V] Adj. LNM
0.4 Pout 3
0.3
2
0.2
1
0.1
0 0
0 0.5 1 1.5
I OUT [A]
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
• COUT:
– 1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
– 1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
• Inductor:
– MSS1038T-223ML (Coilcraft)
• C8:
– 10 pF
100
90
80
70
Efficiency [%]
60
50 Vout = 3.3 [V] Fix. LCM
40
Vout = 3.3[V] Fix LNM
30
Vout = 3.3 [V] Adj. LCM
20
10 Vout = 3.3 [V] Adj. LNM
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4
I OUT [A]
Figure 44. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale)
100
90
80
70
Efficiency [%]
60
50
40
Vout = 3.3 [V] Fix. LCM
30
Vout = 3.3[V] Fix LNM
20
Vout = 3.3 [V] Adj. LCM
10
Vout = 3.3 [V] Adj. LNM
0
0.0001 0.001 0.01 0.1 1
IOUT [A]
Figure 45. Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz
0.9 6
Vout = 3.3 [V] Fix. LCM
0.8
Vout = 3.3[V] Fix LNM 5
0.7
Power losses [W]
POUT [W]
Vout = 3.3 [V] Adj. LNM
0.5
Pout 3
0.4
0.3 2
0.2
1
0.1
0 0
0 0.5 1 1.5
I OUT [A]
11 Thermal dissipation
The thermal design is important in order to prevent thermal shutdown of the device if junction temperature goes
above 165°C. The three different sources of losses within the device are:
• Conduction losses due to the ON resistance of the high-side switch (RDSON_HS) and low-side switch
(RDSON_LS); these are equal to:
PCOND = RDSON_HS ∙ I2 2
OUT ∙ D + RDSON_LS ∙ IOUT ∙ 1 − D (44)
Where D is the duty cycle of the selected application and is given by:
TRISE + TFALL
PSW = VIN ∙ IOUT ∙ FSW = VIN ∙ IOUT ∙ TSW ∙ FSW (46)
2
Where TRISE and TFALL are the overlap times of the voltage across the high-side power switch (VDS) and
the current flowing into it during turn ON and turn OFF phases, as shown in Figure 46. TSW is the equivalent
switching time. For this device the typical value for the equivalent switching time is 30 ns.
• Quiescent current losses, calculated as:
PQ = VIN ∙ IQ, MAX (47)
Where TA is the ambient temperature. RthJA is the equivalent thermal resistance junction to ambient of the device;
it can be calculated as the parallel of many paths of heat conduction from the junction to the ambient. For this
device the path through the exposed pad is the one conducting the largest amount of heat. The RthJA measured
on the demonstration board described in the following section is about 65 °C/W.
It is also possible to estimate the junction temperature directly from the efficiency measurements acquired on a
stationary application condition.
Considering that the power losses are given by:
PLOSS = PIN − POUT (50)
Neglecting the AC losses of the selected inductor, the power losses related to the L6981 are given by:
2
PLOSS L6981 = VIN ∙ IIN − VOUT ∙ IOUT − DCRl ∙ IOUT (51)
12 Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
SIDE VIEW
SIDE VIEW
TOP VIEW
mm
Sym.
Min. Typ. Max.
A - - 1.75
A1 0.10 - 0.225
A2 1.30 1.40 1.50
A3 0.60 0.65 0.70
b 0.39 - 0.47
b1 0.38 0.41 0.44
c 0.20 - 0.24
c1 0.19 0.20 0.21
D 4.80 4.90 5.00
E 5.80 6.00 6.20
E1 3.80 3.90 4.00
e 1.27BSC
L1 1.05REF
h 0.25 - 0.50
L 0.50 - 0.80
ϴ 0 - 8°
13 Ordering information
L6981CDR Adjustable
L6981C33DR 3.3 V LCM (Low Consumption Mode)
L6981C50DR 5V
SO 8L Tape and reel
L6981NDR Adjustable
L6981N33DR 3.3 V LNM (Low Noise Mode)
L6981N50DR 5V
Revision history
Table 12. Document revision history
25-Jul-2022 2 Added new Figure 4, Section 6.5 , Section 12.2 and new part numbers in
Table 11.
Updated Figure 29, Figure 34, Figure 35, Figure 36, Figure 37, Figure
38, Figure 39, Figure 40, Figure 41, Figure 42, Figure 43, Figure 44 and
Figure 45.
Updated Figure 5. Power up/down behavior
19-Dec-2022 3
Updated Figure 6. Soft-start procedure
Contents
1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Typical application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.1 Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4.1 Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4.2 Low noise mode (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4.3 Efficiency for Low consumption mode and Low noise mode part number . . . . . . . . . . . . . 15
6.4.4 Load regulation for low consumption mode and low noise mode part number. . . . . . . . . . 16
6.5 Switch-over feature (fixed VOUT part numbers only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.6 Output overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.6.1 Low consumption mode part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.6.2 Low noise mode part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.7 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.8 Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
7.1 GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 Voltage divider (Adjustable part number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8.1 Programmable power up threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 External synchronization (only available for Low Noise Mode) . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 Output voltage adjustment (Adjustable part number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4.1 Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.4.3 Output capacitor selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 Application board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
10 Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
List of tables
Table 1. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 2. Typical application components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 4. ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 5. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 6. Electrical characteristics TJ = 25 °C, VIN = 24 V unless otherwise specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 7. External synchronization AC coupling suggested operation range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. Input capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 10. SO 8L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 11. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. Basic application (adjustable version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. Basic application (fixed VOUT versions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 5. Power up/down behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Soft-start procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. Soft-start phase with IOUT = 1.25 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. LCM operation with ISKIP = 350 mA typ. at zero load. L = 33 μH; COUT = 32 μF. . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10. LCM operation at zero load condition (part 1-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. LCM operation over 15 mA load condition (part 2-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. LCM operation over 100 mA load condition (part 3-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. LCM operation over 190 mA load condition (part 4-CCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 14. Low noise mode operation at zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 15. Light-load efficiency for low consumption mode and low noise mode - linear scale. VIN = 24 V; VOUT = 5 V; FSW =
400 KHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Light-load efficiency for low consumption mode and low noise mode - log scale. VIN = 24 V; VOUT = 5 V; FSW =
400 KHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - linear scale . . . . . . . . . . . . . . . 16
Figure 18. Load regulation for LCM and LNM part numbers. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - log scale . . . . . . . 16
Figure 19. OVP event low consumption mode part number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 20. OVP event low noise mode part numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. Overcurrent protection behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. Soft-start procedure with VOUT shorted to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 23. Over current procedure with persistent short circuit between VOUT and GND . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 24. Block diagram of the loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 25. Trans-conductance embedded error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 26. Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 27. Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 28. External synchronization. Direct connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 29. External synchronization. AC coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 30. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 31. Evaluation board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 32. Top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 33. Bottom layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 34. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 35. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 36. Power losses VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 37. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 38. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 39. Power losses VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 40. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 41. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 42. Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 43. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 44. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 45. Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 46. Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 47. SO 8L package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 48. SO 8L recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 49. SO 8L tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43